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Abstract
A better understanding of how climate affects growth in tree species is essential for 
improved predictions of forest dynamics under climate change. Long- term climate 
averages (mean climate) drive spatial variations in species’ baseline growth rates, 
whereas deviations from these averages over time (anomalies) can create growth 
variation around the local baseline. However, the rarity of long- term tree census data 
spanning climatic gradients has so far limited our understanding of their respective 
role, especially in tropical systems. Furthermore, tree growth sensitivity to climate 
is likely to vary widely among species, and the ecological strategies underlying these 
differences remain poorly understood. Here, we utilize an exceptional dataset of 
49 years of growth data for 509 tree species across 23 tropical rainforest plots along 
a climatic gradient to examine how multiannual tree growth responds to both cli-
mate means and anomalies, and how species’ functional traits mediate these growth 
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1  |  INTRODUC TION

Tropical forests are key contributors to global carbon sequestration 
(Needham et al., 2018; Pan et al., 2011), but climate change may 
 reduce this important ecosystem service by suppressing tree growth 
or increasing mortality, particularly in tropical forests (Brodribb 
et al., 2020; Sullivan et al., 2020). Therefore, it is important to under-
stand how climate influences tree growth, both through long- term 
local averages (hereafter, ‘mean climate’, calculated over a period 
of 30 years in climate science) and deviations from these averages 
in a given location over a given time period (hereafter, anomalies) 
(Harris et al., 2018; Jentsch et al., 2007; Malhi et al., 2009; Rifai et al., 
2018, 2019). Long- term mean climate can constrain the ways species 
achieve different baseline growth rates (hereafter intrinsic growth 
rates) in different locations through their effect on tree physiolog-
ical processes (Green et al., 2019; Rifai et al., 2018; Sullivan et al., 
2020), while climate anomalies can also drive growth rate deviations 
from the local baseline at a range of temporal scales, including days 
(Zweifel et al., 2021), months (Clark, 2003; Mendivelso et al., 2014; 
Rifai et al., 2018, 2019), and multiple years (Coomes et al., 2014; 
Mendivelso et al., 2014; Rohner et al., 2018; Uriarte et al., 2016; 
Yuan et al., 2019). The multiannual scale of growth variation is of 
particular interest in the context of climate change; growth changes 
over long periods that include sustained periods of constraining cli-
matic anomalies (with less opportunity for recovery) likely reflect 
tree performance responses that impact long- term forest dynam-
ics with climate change (Harris et al., 2018; Jentsch et al., 2007; 
Sanginés de Cárcer et al., 2018; Yuan et al., 2019). Evidence of such 
multiannual climate anomaly effects include growth reduction in 
tropical dry forests following high dry season atmospheric water de-
mand (Mendivelso et al., 2014; Uriarte et al., 2016), or the negative 
effect of high water deficit on stem net primary productivity (Rifai 
et al., 2018).

Major difficulties to disentangle the effects of mean climate 
and anomalies on spatial and temporal growth variations across 
species in wet tropical forests include the high species diversity in 

this biome, the common lack of annual growth rings (Brienen et al., 
2016) and the potentially wide range of species growth sensitivities 
to climate (e.g. DeSoto et al., 2020; Mendivelso et al., 2014; Sanginés 
de Cárcer et al., 2018; Uriarte et al., 2016). Addressing these chal-
lenges requires simultaneously studying multiple sites with different 
baseline mean climates that share common species. Consequently, 
we still have a limited understanding of the mechanisms respon-
sible for species differences in their growth sensitivity to climate 
means and anomalies. Functional traits (sensu Violle et al., 2007) can 
capture species differences in ecological strategies and allocation 
tradeoffs to growth, survival and reproduction (McGill et al., 2006; 
Westoby et al., 2002), and can offer a path towards a more mech-
anistic insight into the ecological strategies underlying tree growth 
response to climate drivers (Brodribb et al., 2020; Laughlin et al., 
2020; Uriarte et al., 2016; Wagner et al., 2014; Zambrano et al., 
2017). Specifically, the ‘fast- slow’ plant economics spectrum links 
fast- growing and slow- growing species to acquisitive and conserva-
tive trait values, respectively (Reich, 2014). As high intrinsic growth 
rates may come with a cost of lower stress tolerance (Gibert et al., 
2016; Reich, 2014), acquisitive strategies could be associated with 
increased growth sensitivity to climate anomalies, while conserva-
tive strategies could attenuate it. Physiological traits directly related 
to photosynthesis and water use efficiency, in particular, are good 
candidates to reflect the effects of light-  and water- related climate 
variables on tree growth and forest dynamics (Brodribb et al., 2020; 
Powers et al., 2020; Rowland et al., 2021; Wagner et al., 2014).

Further, where species perform better (eg, grow faster) across a 
range of mean climatic conditions may also underlie different eco-
logical strategies and help predict expected performance sensitiv-
ities to climatic anomalies (eg, drier periods). However, the sign of 
this relation remains unclear, as species with long- term adaptations 
to a constraining climatic condition (eg, drier mean climate) may be 
either better adapted or closer to a threshold with respect to further 
 deviations (Aguirre- Gutiérrez et al., 2019, 2020; Bennett et al., 2021; 
Esquivel- Muelbert et al., 2020; Zuleta et al., 2017). A related uncer-
tainty when scaling up from the species to the forest level is whether 

responses to climate. We show that anomalous increases in atmospheric evaporative 
demand and solar radiation consistently reduced tree growth. Drier forests and fast- 
growing species were more sensitive to water stress anomalies. In addition, species 
traits related to water use and photosynthesis partly explained differences in growth 
sensitivity to both climate means and anomalies. Our study demonstrates that both 
climate means and anomalies shape tree growth in tropical forests and that species 
traits can provide insights into understanding these demographic responses to cli-
mate change, offering a promising way forward to forecast tropical forest dynamics 
under different climate trajectories.

K E Y W O R D S
climate anomalies, climate change, demography, fast- slow continuum, functional traits, 
photosynthesis, tree vital rates, tropical moist forest ecology, vapour pressure deficit (VPD), 
water use efficiency
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growth sensitivity to climate anomalies varies overall depending on 
local mean climate. Recent works point to additive or interacting ef-
fects between mean climate or climate trends and climate anoma-
lies of increasing magnitude and intensity on ecosystem functions 
and organisms responses to climate change (Aguirre- Gutiérrez et al., 
2019, 2020; Harris et al., 2018; Sullivan et al., 2020), but whether 
the productivity of tropical forests is more at risk in relatively drier 
or warmer mean conditions remains little understood, in the face of 
a further increase in temperature and atmospheric water demand 
related to global warming (Grossiord et al., 2020; Harris et al., 2018; 
Sullivan et al., 2020; Yuan et al., 2019).

Here, we take advantage of a unique 49- year dataset of regularly 
censused tropical tree growth (two-  to five- year intervals) spanning 
509 species across 23 plots covering an elevation range of 1200 m 

and encompassing a broad range of climatic conditions, in North 
Queensland (Wet Tropics of Australia). We additionally use 15 mor-
phological, chemical, and physiological traits related to leaf, wood, 
and maximum size collected within the plot network for 75 dominant 
species to test how these traits mediate species growth responses 
to climate drivers. We couple the multi- year census data with the 
detailed plant traits dataset in Bayesian hierarchical models to relate 
tree growth to species traits, forest plots, and climate (Figure 1). We 
examine the effects of both mean climate and climate anomalies on 
interannual tree growth variation, both within and across species, 
and evaluate the role of functional traits in capturing species dif-
ferences in growth sensitivity. We also test whether the effects of 
climate anomalies on plot- level growth rate variation depend upon 
long- term mean climate. Specifically, we ask:

F I G U R E  1  Spatial and temporal dimensions of the tropical forest network. (a) Maps of North Queensland (Australia) and the 23 forest 
plots on a background of the long- term mean annual precipitation for woody vegetation areas. Circles: plots; Circle colours: Plot elevation 
(strongly negatively correlated to mean annual temperature, Table S3a). (b, c) Illustration of the temporal extent of the study and of the 
concepts of mean climate and anomalies for one plot (Mont Haig) presenting vapour pressure deficit (VPD) and solar radiation (SRAD) 
through time, respectively. (b, c) Show the mean climate (1981– 2010) (horizontal black dashed line) and negative and positive anomalies 
(blue and red vertical segments and dots; monthly anomalies averaged per year). VPD and SRAD were modelled as a plot- specific function 
of year (see Section 2 and Table S4). The thin black line and shaded areas are the median and 95%- highest posterior density interval (HPDI) 
of the slope characterising the VPD increase over time. SRAD did not present any clear trend (slope not represented; i.e. the 95%- HPDI 
encompassed zero)
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1. How do mean climate and climate anomalies determine inter-
annual variation in tree growth rates, and what are the main 
climatic drivers?

2. Are species that grow faster in drier locations more resistant to 
water stress anomalies?

3. Can intrinsic growth rate and functional traits explain interspe-
cific differences in growth sensitivities to climate?

4. Are drier and warmer forests more sensitive to positive anomalies 
in temperature and water stress?

2  |  MATERIAL S AND METHODS

2.1  |  Study sites and demographic data

Individual tree annual absolute growth rates were calculated for 
12,853 trees in 23 permanent forest plots of tropical rainforest 
located in northern Queensland, Australia, between 12°44′ S to 
21°15′ S and 143°15′ E to 148°33′ E, and encompassing an eleva-
tion gradient between 15 and 1200 m a.s.l. and a period of 49 years 
(Figure 1a; Table S1) (20 CSIRO long- term plots (Bradford et al., 
2014), and three more recent plots; see Supplementary Methods 
S1). Regular cyclonic disturbance contributes to the dynamics of the 
forests (Murphy et al., 2013). They cover a wide range of mean an-
nual temperatures (19 to 26.1°C), precipitations (1213 to 3563 mm), 
solar radiation (17.8– 19.4 MJ m−2 day−1) and vapour pressure defi-
cit (VPD, 6.5– 11.8 hPa) (Table S1). At plot establishment, all trees 
with stems ≥10 cm diameter at breast height (DBH) were mapped, 
identified to species level and measured for diameter. The 20 long- 
term plots were re- measured every 2 years for 10 years, and then at 
three-  to four- year intervals, with diameter, recruits and deaths re-
corded, summing up to 11– 17 censuses per plot. The remaining three 
plots were established between 2001 and 2012 and resampled one 
to three times (Table S1).

All available censuses were used to calculate individual annual-
ized absolute growth rate (AGR) based on DBH at date 1 and 2 (t1 
and t2), as:

Abnormal AGR values were removed following Condit et al. 
(2004; see Supplementary Methods S1). Pteridophytes and palms 
species were excluded from the analyses due to their lack of sec-
ondary growth.

2.2  |  Climate data

The effect of climate on growth was studied through four climate 
variables encompassing a wide range of variability across the plots 
and relevant for tree growth (see details in Supplementary Methods 
S1): mean temperature (Tmean), solar radiation (SRAD), VPD, and 

maximum climatological water deficit (MCWD; a proxy of the an-
nual accumulated water stress over the drier season, estimated from 
climate data as the cumulative deficit between precipitation and 
evapotranspiration; hence, better capturing the seasonality of pre-
cipitation and potential soil water deficit than precipitation (Aragão 
et al., 2007; Malhi et al., 2009, 2015) (Tables S1 and S3a).

Climate data collection is detailed in the Supplementary Methods 
S1 and summarized here. Monthly climatic variables were obtained 
for the period 1970 to 2018 for each plot from ANUClimate v.2.0 
(Hutchinson et al., 2014), a spatial model constructed from a new 
anomaly- based approach to the interpolation of Australia's na-
tional point climate data to produce climate variables on a 0.01° 
longitude– latitude grid. The monthly climate variables were inter-
polated from the standard Bureau of Meteorology data network 
using elevation- dependent thin plate smoothing splines as calculated 
by the ANUSPLIN package (Hutchinson & Xu, 2013). The elevation 
dependence of these analyses yielded acceptably small predictive 
errors. Maximum and minimum temperatures were estimated with 
mean absolute predictive errors of around 0.5℃ and solar radiation, 
VPD and rainfall were estimated with relative mean absolute pre-
dictive errors of 4%, 7% and 18%, respectively. The monthly actual 
evapotranspiration (aet) was derived from TerraClimate (Abatzoglou 
et al., 2018). The aet was used in combination with rainfall to calculate 
the monthly climatological water deficit (CWD). The CWD was reset 
to zero at the wettest month of the year and had an upper bound at 
1000 mm. It was used to calculate monthly MCWD through a rolling 
maximum over the previous 12 months.

In each forest plot, a monthly 30- year historical mean and stan-
dard deviation were calculated over the 1981– 2010 period for Tmean, 
SRAD, VPD, and MCWD (Table S1). On this basis, we calculated in 
each plot the monthly anomalies for each variable (i.e., monthly 30- 
year mean μ subtracted from monthly value) and divided them by 
their location- specific 30- year monthly standard deviation σ, yield-
ing standardized anomalies (Aragão et al., 2007; Rifai et al., 2018):

where Xk,t is the climate variable value in plot k at time t (i.e., year and 
month), and μk and σk are the monthly 30- year mean and standard de-
viation of the corresponding plot.

Standardized anomalies are expressed in units of standard de-
viation from monthly means over 1981– 2010. This allows the com-
parison of plots differing not only in their historical means but also 
in the long- term variation range around them, that is, an important 
element to detect anomaly effects on tree growth across different 
climates (Rifai et al., 2018).

To build the climate covariates for the tree growth models, the 
monthly 30- year mean and standardized anomaly variables were av-
eraged over the months between consecutive censuses (2– 5 years). 
For MCWD, the maximum over the growth periods between two 
censuses was used instead of the weighted mean. The eight result-
ing interannual averaged variables were used as predictors to model 

(1)AGR =
DBHt2

− DBHt1

(nb days)t2−t1
× 365

(2)anomaly_stdk,t =

(
Xk,t − �k

)
�k

,
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tree growth (see Section 2.5). Correlations among these variables, 
stand structure, and elevation are presented in Table S3a and the 
Supplementary Methods S1.

2.3  |  Stand structure

As stand structure can vary between plots, we include its effect on 
tree growth through total plot basal area. Plot basal area (m² ha−1) 
was calculated at each census, with expectations that increasing 
basal area would have a general negative effect on tree growth 
(Muledi et al., 2020; Sánchez- Salguero et al., 2015).

2.4  |  Functional traits

Between July and September 2015, we measured 15 traits of 75 
dominants, canopy tree species in eight plots along the gradient 
(Table 1; Tables S1 and S2) for plot and species details. Species were 
chosen to sample those that made up 80% of the standing biomass 
in these eight plots, but were also present in varying proportions in 
other plots; hence, covering the climatic range of the plot network. 
Trait data collection and measurement are detailed in Supplementary 
Methods S1. We measured leaf, wood, and maximum size traits 
that relate to light, water and nutrient use (Table 1; see Table S3b 
for pairwise trait correlations, and Figure S1 for trait distribution 
along the elevation gradient). Traits were measured on three indi-
viduals per species and included photosynthesis and stomatal con-
ductance at a reference CO2 concentration of 400 µmol mol−1 and 
irradiance of 1500 µmol photons m−2 s−1 (Asat and gsat), dark respi-
ration (Rd) at the same CO2 concentration, the CO2- saturated pho-
tosynthesis and stomatal conductance (Amax and gmax), measured at 
1200 µmol mol−1 CO2. The one- point method (De Kauwe et al., 2016) 
was used to estimate the maximum carboxylation rate (Vcmax) for each 
individual from net photosynthesis measured at 400 µmol mol−1 CO2, 
and maximum light- driven electron flux (Jmax) from net photosynthe-
sis measured at 1200 µmol mol−1 CO2 (Bloomfield et al., 2018) (see 
Supplementary Methods S1 for correlation of one- point estimates 
and Aci curve- derived Jmax and Vcmax of a subset of species). We also 
measured leaf stable carbon isotope ratio (δ13C), nutrient concentra-
tion, and leaf area, leaf mass per area (LMA), leaf thickness, and wood 

density (from branches, after bark removal). All traits were averaged 
at the species level for tree growth analyses.

2.5  |  Data analysis

We addressed our four questions through three sets of Bayesian 
multilevel models (M1 to M3; details in Supplementary Methods S1).

2.5.1  |  M1: Tree growth response to climate 
means and anomalies, and species differences in their 
sensitivities to climate

In the M1 models, we used 12,853 individuals from all 509 species to 
test the effects of climate on tree growth and to investigate trade- 
offs among species between intrinsic growth rate and growth sen-
sitivity to climate covariates (ie, to address question 1). We built a 
two- level hierarchical Bayesian model of AGR, where the hierarchy 
included an upper level of response (hereafter grand coefficients or 
effects, affecting AGR across species) above a lower, species- level re-
sponse. The higher level modelled AGR responses to covariates via 
hyperparameters (i.e., statistical distributions from which species- 
level intercepts and slope coefficients arose), while the lower level 
captured species- specific growth sensitivities to model covariates, 
and species- level intercepts (hereafter intrinsic AGR) captured unex-
plained growth variation across individuals, growth periods, and plots.

More specifically, we modelled individual log(AGR) as a species- 
specific function of (i) initial tree size (approximated by log(DBH) at the 
beginning of a growth period), (ii) the local 30- year mean of a climate 
variable, (iii) the anomalies of the same climate variable averaged over 
the studied growth period, and (iv) stand structure (approximated by 
plot basal area at the beginning of a growth period), using varying slopes 
(also known as random slopes) and a covariance matrix to estimate cor-
relations among species- specific AGR sensitivities to the covariates, as:

(3.1)log
(
AGRi,j,k,t

)
∼ Normal

(
�i,j,k,t , �R

) [
Likelihood

]
,

(3.2)
�i,j,k,t =�j+�1j× log

(
DBHi,t

)
+�2j×meanClimk+�3j

×climAnomk,t+�4j×BAk,t+�k+�t+�i [Linear model],

(3.3)

⎛⎜⎜⎜⎜⎜⎜⎝

�j

�1j

⋮

�4j

⎞⎟⎟⎟⎟⎟⎟⎠

∼ MVNormal

⎛⎜⎜⎜⎜⎜⎜⎝

�0

�1,0

⋮

�4,0

, S

⎞⎟⎟⎟⎟⎟⎟⎠

[Adaptive priors for species - level param. ],

(3.4)S =

⎛
⎜⎜⎜⎜⎜⎜⎝

��

0

0

��1

0 0

0 0

⋮ ⋮ ⋱ ⋮

0 0 0 ��4

⎞
⎟⎟⎟⎟⎟⎟⎠

R

⎛
⎜⎜⎜⎜⎜⎜⎝

��

0

0

��1

0 0

0 0

⋮ ⋮ ⋱ ⋮

0 0 0 ��4

⎞
⎟⎟⎟⎟⎟⎟⎠

[Construction of covariancematrix],
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where αj characterizes the intrinsic AGR of species j and β1j, β2j, β3j, and 
β4j characterize the AGR response of species j to tree size, mean climate 
(1981– 2010), standardized climate anomalies, and plot basal area in 
plot k for time interval t. The parameter α0 represents the grand inter-
cept, and the parameters β1– 4, 0 are the grand slopes of model covari-
ates whose posterior distributions represent the effect of covariates 
on AGR across all species.

The matrix of fitted correlation coefficients among all pairs of 
species- level intercepts and slopes (αj, β1j, β2j, β3j and β4j) allows eval-
uating correlations among species intrinsic growth rate (intercepts 
αj) and species AGR sensitivity to model covariates (β1– 4j). For in-
stance, if we consider VPD or MCWD, the ρβ2j,β3j parameter will be 
used to address question 2, that is, whether species AGR sensitivity 
to long- term conditions (eg, of VPD) is correlated to AGR sensitiv-
ity to climate anomalies (of VPD). Similarly, a model with a negative 
ραj,β3j parameter and a negative β3,0 slope would indicate that species 
with higher intrinsic growth rate (αj) tend to have higher sensitiv-
ity (ie, more negative slopes) to climate anomalies (ie, the intrinsic 
growth- related part of question 3). Using covariance matrix to pull 
information across species- level intercepts and slopes through the 
multinormal distribution also improves the accuracy of posterior 
likelihood estimates both across and within species (hierarchical 

levels 1 and 2, respectively) while limiting risks of overfitting through 
adaptive regularizing priors, or partial pooling (McElreath, 2020).

Parameters γk, δt, λi are varying intercepts capturing the residual 
variation in expected individual AGR occurring among forest plots, 
time periods between consecutive censuses (characterized by the 
years beginning and ending a given census period) and individual 
stems, respectively. This model was run separately for each of the 
four climate variables (Tmean, SRAD, VPD and MCWD) to manage 
model complexity (representing a total of four M1 models).

2.5.2  |  M2: Trait- mediated species- level tree growth 
response to climate

Models M2 have the same hierarchical structure as M1, but addi-
tionally include the role of species traits in AGR response to climate 
and only consider 75 locally dominant species with trait data instead 
of all 509 species. Models M2 were used to address question 3, that 
is, to test whether traits mediate climate effects on tree growth. 
We thus used a subset of 5191 individuals from the 75 species with 
trait data. In M2, the species- level intercept and slopes are modelled 
as depending on species mean trait value such that both species- 
specific intrinsic AGR and AGR sensitivity to covariates can be in-
fluenced (either accentuated or lessened) by species traits (Fortunel 
et al., 2018; Rüger et al., 2012; Uriarte et al., 2016) as:

(3.5)R =

⎛⎜⎜⎜⎜⎜⎜⎝

1 ��j ,�1j

��1j ,�j
1

⋮
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⋮
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��j ,�…j
��j ,�4j

��1j ,�…j
��1j ,�4j

⋮

��4j ,�…j

⋮

1

⎞⎟⎟⎟⎟⎟⎟⎠

[Correlationmatrix of species - level params. ],

(3.6)�k ∼ Normal
(
0, ��

)
[Adaptive priors for the k plots],
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(
0, ��

)
[Adaptive priors for the t time periods],

(3.8)�i ∼ Normal
(
0, ��

)
[Adaptive priors for the i individuals],

(3.9)
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)
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where Equations (4.1), (4.2), (4.5)– (4.7) are the same as Equations 
(3.1)– (3.5) of M1, whilst species- level intercepts and slopes are me-
diated by species mean trait value (Equations 4.3– 4.4; see priors in 
Supplementary Methods S1). Parameter α1 is the species- level depar-
ture from the grand intercept (α0) for an increase of one standard devi-
ation in the log(Traitj) value of species j (direct effect of trait on AGR), 
whilst β2– 4, 1 are the departures from the grand slope of the corre-
sponding model covariates for an increase of one standard deviation in 
the log(Traitj) value of species j (trait mediation of AGR response to cli-
mate and stand structure). If the sign of a trait coefficient (β2– 4, 1) is the 
same as that of the corresponding grand covariate effect (β2– 4, 0), then 
increasing values of the Traitj accentuate the effect of the covariate 
(meanClim, climAnom or BA) on tree growth (ie, push β3j further away 
from 0). If the signs are different, increasing values of Traitj attenuate 
the effect of covariate c (ie, pull βc,j closer to 0). We did not include the 
role of species traits in AGR response to tree size because some traits 
can change through tree ontogeny (Fortunel et al., 2020) and our trait 
data does not encompass species tree size ranges. M2 models were 
run separately for each of the four climate variables and for each of the 
15 functional traits to manage model complexity (representing a total 
of 60 M2 models).

In both M1 and M2 models, we standardized the response vari-
able log(AGR) and all covariates— but climate anomalies— to mean 
zero and unit standard deviation, to allow relative importance com-
parisons between covariates through slope coefficients (Schielzeth, 
2010), and to ease plausible weakly- informative prior assignment 
to the parameters (McElreath, 2020) (see Supplementary Methods 
S1). We did not standardize averaged monthly anomalies to maintain 
their interpretability as deviations from long- term means in terms of 
plot- specific units of standard deviation (see Equation 2; ie, mean 
anomaly covariate slope coefficients are not directly comparable to 
other covariate mean slopes). Individual trait measurements were 
averaged per species and log- transformed prior to standardization 
to mean zero and unit standard deviation, thus implying that param-
eter β2– 4,j corresponds to β2– 4,0 at the mean trait value of the dataset.

2.5.3  |  M3: Plot- level tree growth response to 
climate anomalies and interaction with mean climate

M3 models evaluate plot- level growth response to climate anomalies, 
and whether it varies depending on local mean climates (ie, question 
4; e.g. whether plot- level AGR sensitivity to VPD anomalies is higher 
in drier sites). M3 models were run on the basis of all 509 species 
and did not include trait data, like M1 models. We focused on the 
tree growth at the plot level and modelled the expected log(AGR) as 
a linear function of mean climate and climate anomalies. We used a 

similar Bayesian hierarchical model as described for M2, where plot- 
specific average AGR depended on climate anomalies, whose effect 
on AGR itself depended on the plot mean climate, as:

where αk is the average growth rate in plot k, and β1k characterises the 
growth response of plot k to standardized climate anomalies for time 
interval t. α0 is the mean intercept value (ie, mean absolute growth rate) 
across plots, and α1 is the departure from the grand mean for one unit 
increase in mean climate (see d priors in Supplementary Methods S1). 
β1,0 is the grand slope of climate anomalies, and β1,1 is the departure 
from this grand mean for a one- unit increase in mean climate (medi-
ation of the effect of anomalies on growth by the plot mean climate). 
Parameters γj, δt, λi are varying intercepts for species, census periods, 
and individual stems, respectively.

We run M3 models only for two climate variables (VPD and 
SRAD), as we found they were the most important climate variables 
for tree growth in M1 and M2 models (see Section 3). Standardization 
of variables was carried out as for M1.

2.5.4  |  Trends in climate over time

To explore the implications of the effects of climate anomalies on 
tree growth, we built a separate set of hierarchical Bayesian models 
to test for linear temporal trends in mean annual climate variables 
between 1971 and 2019. We used varying year slopes per plots to 

(4.7)R =

⎛⎜⎜⎜⎜⎜⎜⎝
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allow plot- specific trends (model details in Supplementary Methods 
S1). We also run the models for the period 2000 to 2019 for com-
parison with recent analyses suggesting an increasing rate of VPD 
increase over time since the late 90s (Yuan et al., 2019). Annual 
mean temperature and VPD increased by 0.015°C and 0.02 hPa 
per year between 1971 and 2019 (R2 = .97 and .84, respectively, 
Table S4; illustration in Figure 1b) and by 0.038°C and 0.045 hPa 
per year between 2000 and 2019 (R2 = .98 and .81, respectively, 
Table S4). There was no general temporal trend for MCWD or SRAD 
(Figure 1c).

2.5.5  |  Analysis of model outcomes

All model parameter posteriors were summarized through their 
median and 95%- highest posterior density interval (HPDI) (i.e. the 
narrowest posterior interval encompassing 95% of the probability 
mass, corresponding to the coefficient values most consistent with 
the data; McElreath, 2020). Model covariates were considered im-
portant at two high levels of confidence when their coefficient had a 
posterior probability of over 95% or 90% of being either positive or 
negative (HPDI not encompassing zero).

The goodness- of- fit of the models was assessed through the 
squared Pearson correlation between the observed AGR and the 
AGR predicted by the fitted model (R2). M1 and M2 models had high 
explanatory power, with R2 of .46 and .52 on average, respectively. 
M3 models, with VPD and SRAD as climate variables, had an R2 
of  .67 and .63, respectively.

Bayesian updating of parameters was performed via the No- U- 
Turn Sampler (NUTS) in Stan (Carpenter et al., 2017), using three 
chains and 3000 steps (1500 warm- up). All models mixed well and 
converged (Rhat within <0.01 of 1). Models were run in the R envi-
ronment (R Core Team, 2020) using the packages ‘brms’ (Bürkner, 
2017), ‘tidybayes’ (Kay, 2020) and ‘tidyverse’ (Wickham et al., 2019).

3  |  RESULTS

3.1  |  Contribution of climate means and anomalies 
to tree growth

The M1 models of tree growth, based on all 509 tree species and 
not including trait data, indicated that the main climate drivers af-
fecting tree growth across species were the climate means and 
anomalies in Tmean, SRAD and VPD (Figure 2; Figure S3, Table S5). 
Tree growth was higher in forests with higher mean Tmean, SRAD 
and VPD (β2j: 0.17 [0.08, 0.26], 0.05 [0.02, 0.08], and 0.09 [0.02, 
0.17], respectively; median and 95%- HPDI; unless otherwise 
stated, all intervals are 95%- HPDI). However, tree growth was 
reduced when forests experienced positive anomalies in tem-
perature, SRAD and VPD (β3j: −0.12 [−0.17, −0.07], −0.34 [−0.42, 
−0.26] and −0.13 [−0.19, −0.06], respectively). Contrary to our 
expectation, anomalies in MCWD had no clear effect on tree 
growth across species (Figure 2; Figure S2, Table S5). Tree growth 
sensitivity to climate, stand structure and tree size varied widely 
among species (illustration in Figure S3). Similar results were ob-
tained from the M2 models (a subset of 75 species with trait data) 
(Figure S5a– d, Table S5), though we no longer detected the effects 
of temperature anomalies and VPD and solar radiation means in 
this reduced dataset.

3.2  |  Coordinated tree growth sensitivities to 
climate means and anomalies

Using the fitted matrix of correlations among species- level inter-
cepts and slopes from the M1 models on all 509 species (matrix R, 
see Equation 3.5) allowed testing for different sensitivities to cli-
mate anomalies between fast-  and slow- growing species, and be-
tween species growing better at opposite extremes of the range 

F I G U R E  2  Grand effects of climate, 
stand structure and tree size on tree 
growth (based on all 509 species; four 
M1 models). Red and blue arrows indicate 
clear negative and positive effects (ie, 
slope coefficient 95%- highest posterior 
density interval [HPDI] not encompassing 
zero). Arrow widths are proportional 
to the median of the covariate slope 
posteriors (grand slopes, values in 
rectangles; see β1– 4,0 in Equations 3.1– 
3.11) (details in Figure S2 and Table S5)
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of mean climates. Fast- growing species (ie, with high intrinsic AGR) 
were more sensitive than slow- growing species to the negative ef-
fects of both VPD anomalies and plot basal area on tree growth 
(Figure 3c; Figure S4; ρ = −0.36 [−0.48, −0.23] and ρ = −0.29 [−0.41, 
−0.17], respectively). Species that grew better in cloudier forests 
(ie, lower SRAD) tended to show steeper growth decreases when 
experiencing positive anomalies in solar radiation (Figure 3b; ρ = 
0.17, [0.01, 0.33]). Species that grew faster in drier forests (ie, higher 
VPD) were more negatively affected by positive VPD anomalies 
(Figure 3a; ρ = −0.15 [−0.29, 0.00]). Finally, species most negatively 
affected by positive anomalies in VPD also experienced stronger 
growth decrease in denser forests (high basal area) (Figure 3d; ρ = 
0.27 [0.14, 0.40]).

3.3  |  Drier rainforests are more sensitive to 
VPD anomalies

M3 models highlighted clear interactions between the effects of 
climate anomalies and mean climate for VPD (β1,1: −0.26 [−0.39, 
−0.13]; see Equations (3.1)– (3.11)), and to a lesser extent for 
solar radiation (β1,1: −0.09 [−0.18, −0.01], 90%- HPDI; Table S5). 
Drier tropical rainforests showed a steeper decrease in plot- 
level growth in response to increasing positive VPD anoma-
lies (Figure 4a; Table S5). Cloudier forests exhibited a stronger 

decrease in plot- level growth with increasing positive SRAD 
anomalies (Figure 4b; Table S5).

3.4  |  Functional traits influence species intrinsic 
tree growth and their response to climate drivers

Based on the M2 models of tree growth for the subset of 75 lo-
cally dominant species with trait data, species intrinsic growth in-
creased with dark respiration rate (Rd), DBHmax, leaf P content, Asat, 
Vcmax, leaf δ13C and LMA. (Figure 5; Figures S5e; details in Table S5). 
Species traits also mediated the effects of climate and forest struc-
ture on tree growth, either by accentuating them (species with high 
values of the trait respond more strongly) or by attenuating them 
(species with low values of the trait are more sensitive) (Figure 5; 
details in Figure S6; Table S5). Leaf δ13C and P content exacerbated 
the negative effects of positive anomalies in SRAD on tree growth, 
whilst Amax, gmax, gsat and Jmax attenuated them (Figure 5; Figure S6f, 
Table S5). The negative effects of anomalies in VPD on tree growth 
were exacerbated in species with high leaf δ13C, DBHmax, leaf P, and 
LMA, further confirming that VPD anomalies had the most negative 
effects on fast- growing species (Figure 3c), but also those with low 
gmax or leaf area (Figure 5; Figure S6g). Tree growth was less reduced 
by denser forest environments (high plot basal areas) in species with 
high wood density, low Rd and low leaf δ13C (Figure 5; Figure S6i– l).

F I G U R E  3  Correlations among species- level growth sensitivities highlighting joint responses to multiple drivers (M1 models; 509 species). 
Joint growth sensitivities to: (a) vapour pressure deficit (VPD) anomalies and mean VPD; (b) Solar radiation anomalies and mean solar 
radiation; (c) VPD anomalies and intrinsic growth rate; (d) VPD anomalies and plot basal area. Circles are species, placed at the median 
of their corresponding coefficient posteriors. Vertical and horizontal bars are 95%- highest posterior density interval (HPDI) for the 
corresponding coefficients. Species for which both plotted coefficients were important are plain blue; other species are shaded. Blue and 
red regression lines indicate positive and negative correlations (ρ, see Equation 3.5 in Supplementary Methods S1), respectively. Values 
beyond and below zero indicate positive and negative effects on growth rates, respectively. Mean, lower and upper 95%- HPDI are in the 
upper right- hand corner of the figures

(a)

(c) (d)

(b)
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F I G U R E  5  Mediation of intrinsic growth rate and climate anomaly effects on growth rate by species functional traits (M2 models; 
75 species). The figure only presents important trait effects (95-  or 90%- highest posterior density interval [HPDI] not encompassing zero; 
non- transparent and semi- transparent arrows, respectively) (see Figures S5 and S6 for all model coefficients and all traits). Red and blue 
plain arrows indicate negative and positive direct effects of traits on species’ intrinsic growth rate (α1, see Equation 4.3). Dashed arrows 
are slope coefficients indicating indirect trait effects on growth through the effects of environmental covariates, ie, accentuation (red) or 
attenuation (blue) of the negative effects of VPD or SRAD anomalies when trait values increase (β3,1, see Equation 4.4). Arrow widths are 
proportional to the median of the covariate slope posterior across species (ie, grand slope; details in Figure S6 and Table S5)

F I G U R E  4  Plot- level growth sensitivity to positive (a) vapour pressure deficit (VPD) anomalies and (b) solar radiation (SRAD) anomalies 
(b) across the full range of the corresponding mean climate variable (M3 models). Circles and vertical bars are the median and 95%- highest 
posterior density interval (HPDI) of the plot- level slope posteriors characterizing the growth rate responses to climate anomalies. The plot- 
level models including VPD (a) and SRAD (b) had a marked interaction between anomalies and long- term mean (Table S5), so that plot- level 
sensitivities to a given anomaly depend on plots’ long- term mean. (a, b) Illustrate those interactions through the differences of plot- level 
growth sensitivity to positive anomalies across the range of long- term means of the corresponding variable. The represented plot- level 
coefficients were calculated for a positive standardised anomaly equal to the 95th percentile of anomalies in the data, ie, a standardized 
anomaly of 0.8 (a) and 0.4 (b). The red and blue regression lines and shaded areas are decreasing and increasing slopes, respectively (median 
and 95%- HPDI, not encompassing zero), of the represented plot- level coefficients along the long- term means. Horizontal dashed line: limit 
between positive and negative slope coefficients indicating a growth rate increase and decrease, respectively, with the positive anomaly
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4  |  DISCUSSION

In this study, we aimed to disentangle the influences of mean cli-
mate and climate anomalies on interannual tree growth and de-
fined how species functional traits mediated climate effects by 
combining 49 years of demographic data, functional traits and 
climatic data along a climatic gradient in 23 tropical rainforests 
of Australia.

4.1  |  What are the important climatic drivers for 
tree growth?

Solar radiation (SRAD) and atmospheric water demand (VPD) 
anomalies were the two overarching climatic drivers of tree 
growth across pre- existing climatic conditions and species in our 
study. These two variables were also the main drivers of seasonal 
stand- level net primary productivity in aseasonal forests across 
the tropics (Rifai et al., 2018), and increasing VPD due to anthro-
pogenic climate change has repeatedly been shown to impact 
tree growth, biomass and vegetation health (Eamus et al., 2013; 
Novick et al., 2016; Rifai et al., 2019; Sanginés de Cárcer et al., 
2018; Yuan et al., 2019). The pervasive negative effect of VPD 
anomalies on tree growth in our study is consistent with expecta-
tions from stomatal conductance models (Grossiord et al., 2020), 
with stomatal closure and ensuing restriction of CO2 assimilation 
rate triggered by VPD values exceeding the climate mean and 
usual variation range. This negative effect of VPD is expected to 
be amplified by SRAD anomalies, as VPD depends on leaf tem-
perature, which itself increases with SRAD (Grossiord et al., 2020). 
The negative influence of SRAD anomalies on tree growth may be 
additive to that of VPD anomalies, as previously shown (Krause 
& Winter, 2020; Rifai et al., 2018, 2019). Furthermore, positive 
SRAD anomalies did not enhance tree growth but reduced it, as 
would be expected from a VPD- related effect. However, the ef-
fect of SRAD anomalies on tree growth was probably more than a 
mere reflection of VPD, as anomalies in SRAD and VPD were only 
moderately correlated (r = .33, Table S3a). Excess or fluctuating 
light, and changes in light quantity and quality are other poten-
tial mechanisms underlying SRAD anomaly effects, as these can 
be direct physiological stressors (Krause & Winter, 2020; Roeber 
et al., 2020), or indirectly influence the response to other abiotic 
or biotic stresses (Roeber et al., 2020).

The strong effect of VPD anomalies compared to the undetect-
able effect of MCWD anomalies suggests that VPD may limit tree 
growth before soil water becomes limiting, further confirming pre-
vious results in temperate and tropical forests (Choat et al., 2012; 
Konings et al., 2017; Novick et al., 2016; Rifai et al., 2018; Sanginés 
de Cárcer et al., 2018). This is a key result, given the generalized tree 
growth decrease potentially driven by increasing VPD anomalies, 
as VPD has been strongly increasing in the tropics due to anthro-
pogenic climate change (Rifai et al., 2019). Yuan et al. (2019) high-
lighted a particularly- strong increasing VPD trend at the global scale 

beginning in the late 1990’s (0.017 hPa/year). Modelling VPD anom-
alies through time from 2000 to 2019 in our dataset, we detected a 
3.8- fold stronger VPD increase rate across all plots (0.045 hPa/year, 
90%- HPDI: 0.019, 0.066; R2 = .80; details in Table S4; eg Figure 1b). 
This trend itself was stronger than the 1971– 2019 trend in our 
dataset (0.020 hPa/year; R2 = .84; Table S4), indicating a sharper- 
than- previously- thought VPD increase in the past two decades. This 
rapid increase of VPD anomalies through time combined with the 
generalized ensuing decrease in tree growth and growth sensitivity 
variability to VPD among species (Figure S3, Table S5) suggests that 
tropical forest composition and functions may be strongly altered by 
ongoing climate change, especially by VPD. It is worth noting that 
soil water deficit also depends on evapotranspiration estimates ac-
curacy and variables unaccounted for, here (eg, soil- water retention 
capacity, topography), so that the importance of soil- related water 
stresses should be interpreted with caution.

In spite of the suppressing effects of increasing anomalies in 
SRAD, VPD and Tmean, average growth rates were higher in warmer 
and sunnier forests (ie, higher long- term means), across species 
(Figure 2) and within many species (Table S5). While long- term Tmean 
was highly correlated with elevation (r = −.95; Table S3a), mean solar 
radiation was not correlated with neither elevation nor the other cli-
mate variables (Table S3a). This suggests that these forests are in 
general energy- limited along the elevation gradient (faster growth 
in lowland forests), and light- limited across the gradient, supporting 
previous results along an Amazon- Andes elevation gradient (Fyllas 
et al., 2017). Our gradient of mean climates encompassed 7 to 51% 
of the global- scale climate space of tropical forests, but did not en-
compass their driest and warmest conditions (see Figure S7). Future 
studies will need to cover a broader range of climate values to test 
how generalizable the relationships that we detected are for tropical 
forests worldwide.

4.2  |  Trade- offs in tree growth responses 
to climate

We showed that two aspects allowed understanding the broad 
range of species differences in growth response to VPD anoma-
lies: the long- term mean VPD where species grew better, and the 
contrast between slow-  and fast- growing species (Figure 3a,c). The 
models including plot- specific responses to climate anomalies addi-
tionally showed that forest growth sensitivity to VPD anomalies was 
stronger in drier forests, mostly at the higher end of the VPD range 
(Figure 4a). This result could be driven by higher levels of obligate or 
facultative deciduousness, as even the wettest rainforests have sea-
sonal peaks in leaf fall (Edwards et al., 2018) and the drier the forest 
the earlier the leaf fall peak and the shorter the growing season. Our 
results support recent findings indicating that drier forests could be 
more sensitive to increasing VPD anomalies (Aguirre- Gutiérrez et al., 
2019, 2020; Esquivel- Muelbert et al., 2020; Powers et al., 2020), 
which would here translate into drier rainforests already being under 
water stress and therefore closer to a threshold of further growth 
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decrease than moist rainforests. This effect may not be linear and 
will need to be further tested with more plots encompassing diverse 
water- stress conditions.

Similarly, Sullivan et al. (2020) recently argued that warmer for-
ests may be closer to a temperature threshold beyond which woody 
productivity would decrease. In our study, this would translate into 
expectations that forests and species adapted to warmer conditions 
would respond more negatively to further temperature increases. 
Our results are consistent with this expectation but suggest that the 
temperature effect manifests itself indirectly through VPD.

Species that grew faster in cloudier forests showed the strongest 
growth reduction due to positive SRAD anomalies (Figure 3b). This 
may reflect species differences in light- use strategies, with species 
that grow well under low direct- sunlight conditions not benefitting 
from brighter conditions. This was supported by the stronger nega-
tive effects of SRAD anomalies in species with lower maximum pho-
tosynthetic capacity, stomatal conductance and electron transport 
capacity (Figure 5), a trait syndrome consistent with shade- tolerance 
strategies (He et al., 2019). This interpretation was supported in 
the plot- level analyses by the steeper growth rate decreases in the 
cloudier forests in response to positive SRAD anomalies (Figure 4b), 
which may stem from a plot- wide relatively more marked adaptation 
to shade tolerance.

4.3  |  Functional traits mediate the effects of 
climate anomalies on tree growth

Traits directly influenced species intrinsic growth rate in locally domi-
nant species in our plot network. As expected, the intrinsic growth 
rate increased with metabolism (Rd), maximum size (DBHmax) and 
acquisitive chemical and physiological traits related to the photo-
synthetic machinery (leaf P content, Asat and Vcmax). However, it also 
increased with leaf δ13C and LMA, contrary to expectations as high 
values of these traits correspond to tough, long- lived leaves and high 
intrinsic water use efficiency (Cernusak et al., 2013; Osnas et al., 
2013). In our study, leaf δ13C was positively correlated with leaf N 
and P contents (Table S3b), suggesting variation in δ13C among spe-
cies may have been driven more by photosynthetic capacity than by 
stomatal conductance. The positive association of LMA and growth, 
also reported in previous studies (Gray et al., 2019; Poorter et al., 
2008; Wills et al., 2018), could be explained by a change in the cost- 
benefit balance of acquisitive traits with plant size (Gibert et al., 2016; 
Gray et al., 2019).

An overarching finding is that species traits can enhance our un-
derstanding of differences in species growth response to the anom-
alies of SRAD and VPD, and to forest stand structure. Our results 
confirmed that resource- acquisitive species overall had a higher 
intrinsic growth rates and that their growth was more sensitive to 
positive anomalies in SRAD and VPD. This highlights a trade- off 
between fast growth (via high allocation to acquisitive tissues) and 
sensitivity to atmospheric water stress, consistent with expectations 
from the ‘fast- slow’ plant economics spectrum (Reich, 2014).

Most physiological traits directly related to photosynthesis 
(Table 1) successfully captured species differences in growth sen-
sitivity to SRAD anomalies (Figure 5; Figure S6), confirming the im-
portance of physiological traits to investigate potential mechanisms 
underlying differences in demographic responses to climate change 
among species (Brodribb et al., 2020; Powers et al., 2020; Rowland 
et al., 2021). Increasing values of these traits attenuated the tree 
growth reduction following increasing SRAD anomalies (Figure 5; 
Figure S7), suggesting that species investing in a more responsive 
and flexible photosynthetic machinery may cope better with un-
usually high direct exposure to sunlight. Whilst most traits that in-
creased species intrinsic growth rate also exacerbated the negative 
effects of VPD anomalies on tree growth, the mediation of SRAD 
anomalies by species traits was mostly independent of the fast- slow 
spectrum (Figure 5; Figures S5 and S6). For example, whilst leaf P 
concentration, stable carbon isotope ratio and the maximum photo-
synthetic capacity tended to increase intrinsic growth rate, the two 
former accentuated while the latter attenuated the negative effects 
of SRAD anomalies on tree growth (Figure 5).

Here, the data at hand did not allow us to integrate intraspecific 
or temporal trait variability into the growth models, nor could we 
consider traits from rare species that may occupy different parts of 
the trait space (Leitão et al., 2016; Mouillot et al., 2013; Violle et al., 
2017). These sources of variation may potentially change some ef-
fect sizes (Bloomfield et al., 2018; Rowland et al., 2021; Yang et al., 
2018, 2021), although this would be unlikely to affect the direction 
of the effects shown here, as the structure of our multilevel models 
was centred on species ranking, which is usually conserved (Auger 
& Shipley, 2013; Oliveras et al., 2020). Exploring sources of uncer-
tainty in species traits such as a potential climate change- driven trait 
acclimation over time for certain traits (Bloomfield et al., 2018; Way 
& Yamori, 2014), tissue- level traits not providing a consistent and 
generalizable upscaling to whole- tree energy allocations and strate-
gies across species (Yang et al., 2018), or climate effects on growth 
being mediated by multivariate phenotypes (ie, trait interaction 
 effects) (Laughlin et al., 2018; Pistón et al., 2019), will be a challenge 
to address in future studies, mostly in terms of data collection.

4.4  |  Stand structure as a driver of tree 
growth variation

Plot basal area consistently strongly reduced tree growth across spe-
cies and explained more growth variation than mean climate for all 
four climate variables. Although plot basal area was partly correlated 
with elevation, the 30- year average of Tmean and VPD (r = .63, −.59, and 
−.47, respectively; Table S3a), the slope coefficient of the basal area 
remained virtually unchanged across models including Tmean, VPD, or 
the other less correlated covariates (and was much steeper than the 
slopes of long- term Tmean or VPD), so that the stand structure effect 
detected here is unlikely to indirectly reflect Tmean or VPD, and is likely 
to approximate— though in an imperfect spatially implicit way— the 
mean neighbourhood crowding of the plot. Furthermore, the faster 
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growth in less dense environments across forest plots suggests a 
release from competition for light. This is supported by the general 
light- limitation suggested by the faster growth in sunnier sites. Slower 
growth in denser environments may also suggest an increase in com-
petition for resources or attacks by natural enemies. Neighbourhood 
crowding has indeed been shown to strongly reduce tree growth in 
tropical and temperate forests (Clark et al., 2014; Fortunel et al., 2016; 
Uriarte et al., 2016; Zambrano et al., 2017). In line with these studies, 
we found that conservative species with high wood density suffered 
less growth reduction from increasing plot basal area, whilst acquisi-
tive species with high dark respiration rate and leaf δ13C were more 
sensitive to increasing plot basal areas (Figures S5 and S6).

In summary, we have shown how long- term demographic data 
across multiple plots encompassing environmental gradients, com-
bined with functional traits collection can yield insights into how 
climate affects the interannual variation of tree growth at different 
temporal scales, and give important clues into which species and for-
ests may be particularly vulnerable to climate change, and why. Our 
findings emphasise the importance of functional traits— and notably 
those related to photosynthesis and water use efficiency— to under-
stand species differences in demographic sensitivity to abiotic and 
biotic drivers. Future efforts to further characterise how climate and 
neighbourhood crowding affect tree growth, survival and popula-
tion growth across environmental gradients, and how these effects 
are mediated by species traits will help improve predictions of forest 
response and future ecosystem functions to climate change under 
different trajectories.
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