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Abstract

Mapping forest types and tree species at regional scales to provide information

for ecologists and forest managers is a new challenge for the remote sensing

community. Here, we assess the potential of a U-net convolutional network, a

recent deep learning algorithm, to identify and segment (1) natural forests and

eucalyptus plantations, and (2) an indicator of forest disturbance, the tree spe-

cies Cecropia hololeuca, in very high resolution images (0.3 m) from the World-

View-3 satellite in the Brazilian Atlantic rainforest region. The networks for

forest types and Cecropia trees were trained with 7611 and 1568 red-green-

blue (RGB) images, respectively, and their dense labeled masks. Eighty per cent

of the images were used for training and 20% for validation. The U-net net-

work segmented forest types with an overall accuracy >95% and an intersection

over union (IoU) of 0.96. For C. hololeuca, the overall accuracy was 97% and

the IoU was 0.86. The predictions were produced over a 1600 km2 region using

WorldView-3 RGB bands pan-sharpened at 0.3 m. Natural and eucalyptus for-

ests compose 79 and 21% of the region’s total forest cover (82 250 ha). Cecro-

pia crowns covered 1% of the natural forest canopy. An index to describe the

level of disturbance of the natural forest fragments based on the spatial distri-

bution of Cecropia trees was developed. Our work demonstrates how a deep

learning algorithm can support applications such as vegetation, tree species dis-

tributions and disturbance mapping on a regional scale.
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Introduction

Brazil is among the most biodiverse nations in the world,

containing an estimated 20% of the Earth’s biodiversity

(SSC, 2012). Among Brazilian biomes, the Atlantic rain-

forest is a global priority for biodiversity conservation due

to the abundance of flora and fauna species that are found

there (Laurance 2009; Joly et al. 2010; SSC, 2012). This

biome has been subjected to major changes, with a reduc-

tion of an estimated 12.5% of its original forest cover

(INPE, 2013). The remaining Atlantic forest is extremely

degraded: over 80% of the fragments are <50 ha, almost

half of the forest is <100 m from its edges, the average dis-

tance between fragments is large (1440 m), and nature

reserves protect only 9% of the remaining forest and 1%

of the original forest (Ribeiro et al. 2009). Aside from

deforestation, other human-induced processes such as log-

ging and fire cause degradation and thus further loss of

ecosystem services provided by the forest.

On the other hand, large areas of this biome are cur-

rently recovering from past deforestation, as seen by an

increase in tree cover since the year 2000 (Hansen et al.

2013). This increase is mainly driven by the plantation of

eucalyptus forests but it also includes a significant pro-

portion of natural regeneration (Silva et al. 2018). These

secondary forests cover an estimated 4.7% of the area of

the original biome for the Atlantic forest (FAO, 2010).

This natural regeneration of abandoned pasturelands can

improve the provision of ecosystem services and habitat

availability (Strassburg et al. 2016). However, currently,

little is known about how these forests recover during

secondary succession, thereby adding uncertainty to the

estimation of the ecosystem services it provides (World

Resources Institute, 2005; Diaz et al. 2006).

This leads to one of the major current challenges for

conservation, which is to obtain reliable and accurate

information on a large scale to monitor biodiversity,

resources, ecosystem services as well as the human impact

on natural ecosystems. Remote sensing is considered as

being a key to this effort, mainly because of spatial reso-

lution and temporal resolution of the datasets, which

currently enable tracking elements of biodiversity, and

also because of the increase in available data and compu-

tational capacity (Pettorelli et al. 2014; Turner 2014; He

et al. 2015; Kwok 2018). The species occurrence measure-

ment by satellite is among the 10 proposed biodiversity

metrics to monitor the progress toward the Aichi Biodi-

versity Targets (Skidmore et al. 2015) as well as a recom-

mended action to reach millennium goal 7: ‘Ensure

environmental sustainability’ (United Nations, 2005).

Currently, significant efforts are being made to map for-

est cover and the changes therein, mainly based on Landsat

data, with a spatial resolution of 30 m and a 1-year tempo-

ral resolution, such as Global Forest Change map (Hansen

et al. 2013) and project MapBiomas specifically for Brazil

(MapBiomas, 2018). Such resolution has revealed that frag-

mentation is increasing in all tropical forests (Taubert et al.

2018). However, it is still too coarse to retrieve information

regarding species or the distribution of individual trees that

can inform on the successional stage, diversity or distur-

bance levels of these ecosystems, which play key roles in

maintaining environmental processes such as the water

cycle, soil conservation, carbon sequestration and habitat

protection (FAO, 2016).

To estimate disturbances in neotropical forests from

satellite images, tree species of the genus Cecropia are good

candidates. Cecropia is a widespread and abundant genus in

the Neotropics (Franco-Rosselli and Berg 1997; Zalamea

et al. 2012). Its abundance is related to disturbance inten-

sity and has been recently shown to be a reliable indicator

of forest biomass (Guitet et al. 2018). Cecropia trees have

also been used to accurately date disturbances in secondary

forests, as the age of the tree can be estimated with simple

measurement of the tree node number (Zalamea et al.

2012). The trees of the species Cecropia hololeuca also pre-

sent remarkable characteristics to support remote sensing

methods of disturbance estimation in the Atlantic forest

biome; these trees are abundant and can be easily visually

detected in very high resolution images due to the morpho-

logic and spectral characteristics of their leaves which are

large and bright gray.

The last years have seen the revolution of deep learning

for image classification, which began with the introduction

of AlexNet in 2012 (Krizhevsky et al. 2012). Since then,
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deep learning computer vision algorithms have a growing

role in the remote sensing field. The main advantage is that

these supervised deep convolutional networks take raw data

and automatically learn features through training, with

minimal prior knowledge about the task (LeCun et al.

1998). For example, in the case of image segmentation,

prior information is only given by labeled masks of the

objects to recognize in the training images. These deep

learning algorithms are used for land cover classification

(Arief et al. 2018; Sun et al. 2018), scene classification

(Maggiori et al. 2017; Wang et al. 2017; Li et al. 2018; Liu

et al. 2018) and object extraction (Xu et al. 2018). One par-

ticular type of network used for object extraction, the U-

net network, is highly promising as it has been shown to

outperform all traditional classification methods (Ron-

neberger et al. 2015; Huang et al. 2018). The architecture

of this network consists of a contracting path to capture

context and a symmetric expanding path that enables pre-

cise localization (Ronneberger et al. 2015). In remote

sensed ecology, the applications of deep learning methods

are at the beginning. Such applications are few, but success-

ful; for example, oil palm tree detection and counting (Li

et al. 2017), as well as recognition of tree type (deciduous/

evergreen) or species (Onishi and Ise 2018).

The following are the main objectives of this study. First,

to assess the capacity of deep learning convolutional net-

works known as U-net (Ronneberger et al. 2015) to iden-

tify and segment (1) forest types (natural vs. plantations)

and (2) Cecropia hololeuca, a tree species indicator of forest

degradation, in a ~1600 km2 region of fragmented Atlantic

forest near S~ao Paulo, Brazil. Second, to measure the dis-

turbance within the natural forest fragments with a new

disturbance metric based on the individual tree distribu-

tion of C. hololeuca. To our knowledge, this is the first

time that all adult individuals of a natural tree species are

identified and segmented at a regional scale with very high

resolution multispectral images.

Materials and Methods

Study site

This study was undertaken in a region of the Atlantic

Forest biome located in the S~ao Paulo State, Brazil, and

centered at 23°11043″S and 45°21050″W, as shown in Fig-

ure 1A. This area was selected for the study because it

contains several remnants of the Atlantic Forest biome as

well as secondary forests at different stages of regeneration

and planted eucalyptus forests (Figure 1B). Most of the

forest plots from the BIOTA project (Joly et al. 2010) are

also included in this region to study the effect of frag-

mentation of the biome.

WorldView-3 images and preprocessing

The three WorldView-3 images (DigitalGlobe, Inc., West-

minster, CO, USA) over the region were acquired on 13

August 2017, at an average off nadir view angle of 20.1°. Dig-
italGlobe catalog Ids of the images were A01001032124B200,

A01001032124CE00 and A01001032124D900. These three

images were distributed in tiles of 16 384 9 16 384 pixels,

which represents 40 tiles for each image. Only 90 tiles with-

out significant cloud cover were retained for the analysis

(Figure 1B). The spatial resolution of the bands was 0.3 m

for the panchromatic band (464–801 nm) and 1.2 m for

the selected multispectral bands: Red (629–689 nm), Green

(511–581 nm) and Blue (447–508 nm). All bands were

scaled from raw image digital numbers (11 bits) to 0–255
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(8 bits). The red-green-blue (RGB) bands were pan-

sharpened with the panchromatic band using the method

Simple RCS of the Orfeo toolbox addon otbcli_
BundleToPerfectSensor (Grizonnet et al.

2017) to create a single high resolution RGB image at a spa-

tial resolution of 0.3 m. We used only RGB bands as the

targets were already identifiable with a high confidence in

the pan-sharpened RGB image and also for the parsimony

of the model. No atmospheric correction was performed.

Some thin transparent clouds were still present in the

images, and a cloud mask was created manually to remove

these pixels from the analysis.

Field data

Natural/planted forests mask

All occurrences of natural forests and eucalyptus plantations

were manually delineated in two tiles (16 384 9 16 384 pix-

els, 4.9152 km of side) of the Worldview-3 images. The nat-

ural forest and eucalyptus plantations are easily identifiable

in the images, as shown in Figure 2.

At this step, 550.3 and 2711.9 ha were delineated as

planted and natural forests, respectively. Then, a raster mask

coded in RGB was produced with the following values: back-

ground [0,0,0], natural forest [254,254,254] and eucalyptus

plantation [127,127,127]. Cropping the tiles in images of

256 9 256 pixels resulted in 7611 available images for

training, as one of the tiles have a large band of no data on

the border thereby making it impossible to use the entire

tile.

Cecropia trees mask

All occurrences of C. hololeuca trees were manually delineated

in one tile (16 384 9 16 384 pixels) of the Worldview-3

image. This species is identifiable in the images due to its

bright gray leaves, as shown in Figure 3. The delineated sam-

ple comprises 2228 polygons for Cecropia trees, where each

polygon can represent more than one individual tree. With

the delineated polygons, a raster mask coded in RGB was pro-

duced with the following values: background [0,0,0] and

Cecropia sp. [254,254,254]. Cropping the mask into images of

128 9 128 pixels resulted in 1568 available images for train-

ing (images that contained at least one Cecropia tree).

All polygon delineations were made using QGIS (QGIS

Development Team, 2009).

Forest and land cover data

To test if our forest-type classification was consistent with

independent datasets of land cover/use maps of the region, we

compared our results to the Global Forest Change Map 2000–
2016 version 1.4 (Hansen et al. 2013) and to the 2017 Atlantic

forest vegetation map from the Project MapBiomas – Collec-

tion 2.3 (MapBiomas, 2018). MapBiomas Project is a multi-

institutional initiative to generate annual land cover and use
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Figure 2. Example of 256 9 256 pixels images from the training

sample with the following forest types: natural forest (A and B) and

eucalyptus plantation (C and D) (Satellite image courtesy: DigitalGlobe

Foundation).
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Figure 3. Example of images (256 9 256 pixels) with the species of

interest, Cecropia hololeuca (A–D) (Satellite image courtesy:

DigitalGlobe Foundation).
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maps using automatic classification processes applied to satel-

lite images. A complete description of the project can be found

at http://mapbiomas.org. The MapBiomas map was produced

based on the Landsat Data Archive available in the Google

Earth Engine platform, encompassing the years from 2000

through the present days. The MapBiomas map results from a

pixels-based classification based on random forest machine

learning to overcome empirical calibration of the input param-

eters for image classification; details of the methods are given

in the manual of the product. Overall accuracy of MapBiomas

level 2 product for the Atlantic forest biome is 84.1%, the frac-

tion of the error attributed to the amount of area allocated

incorrectly to the classes by the mapping (Allocation Disagree-

ment) is 4.7% and the mismatch allocation to the ratio of

class-displacement errors (Area Disagreement) is 11.2% (Map-

Biomas, 2018).

U-Net Model

Architecture

In this study, we used a convolutional network for multi-

class image segmentation known as U-net (Ronneberger

et al. 2015). This network performs a per-pixel

classification, predicting the probability of each pixel to

belong to a particular class. This U-net model has recently

proven to become a new standard in image dense labeling

(Huang et al. 2018). We adapted the U-net architecture

from Ronneberger et al. (2015) with twice less filters, since

our training set is limited and a smaller number of filters

helps in preventing overfitting. Furthermore, we used a

three-band RGB image as the input, and have adapted the

network architecture accordingly (Figure 4). Sigmoid acti-

vation functions were used to ensure that output pixel val-

ues range between 0 and 1. For the training, we used an

input size of 256 9 256 pixels for forest-type segmentation

and 128 9 128 pixels for the Cecropia trees segmentation.

Network training

The training samples comprised 1568 images of

128 9 128 pixels for Cecropia trees and 7611 images

of 256 9 256 pixels for forest types. The size of

128 9 128 pixels was selected because Cecropia crowns are

smaller than 128 pixels in diameter (128 pixels = 38.4 m).

An image size of 256 9 256 pixels was used for natural for-

est/plantations to include a better contextual information, as

the crowns of some large trees can entirely cover an image of

Figure 4. U-net architecture for the forest types segmentation, adapted from Ronneberger et al. (2015). The number of channels is indicated

above the cuboids and the vertical numbers indicate the row and column size in pixels.
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128 9 128 pixels; and also because in plantation, trees are

generally planted in lines and this information is more visi-

ble with this image size. Each image contained at least one

object. The images were extracted from uniform grids of

128 9 128 and 256 9 256 pixels, without any overlap

between neighboring images. Eighty per cent of these images

were used for training and 20% used for validation. During

network training, we used a standard stochastic gradient des-

cent optimization. The loss function was designed as a sum

of two terms: mutual cross-entropy and Dice coefficient-

related loss (Dice 1945; Chollet et al. 2015; Allaire and Chol-

let 2016). We used the optimizer RMSprop (unpublished,

adaptive learning rate method proposed by Geoff Hinton –
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_

slides_lec6.pdf) with an initial learning rate of 1e-4. We

trained our network for 100 epochs, where each epoch com-

prised of 78 batches with 16 images per batch. The optimiza-

tion was stopped when the loss function improvement did

not exceed 1e-4.

Data augmentation was applied randomly to the input

images, including 0/90/180/270° rotations and change in

the brightness, saturation and hue by converting RGB to

brightness–saturation–hue space and modulated the

current values by between 95 and 110% for brightness,

95–105% for saturation and 99–101% for hue (as changes

in the plant hues are not expected).

Segmentation accuracy assessment

Three performance metrics were computed. First, the

overall accuracy was computed as the percentage of cor-

rectly classified pixels. Second, the intersection over

union (IoU) of the object class, which is the number of

pixels labeled as object in both the prediction and the

reference, divided by the number of pixels labeled as

object in the prediction and in the reference. Third, the

F1 score was computed for each class i as the harmonic

average of the precision and recall (eqn 1), where preci-

sion was the ratio of the number of segments classified

correctly as i and the number of all segments (true and

false positive) and recall was the ratio of the number of

segments classified correctly as i and the total number of

segments belonging to class i (true positive and false

negative). This score varies between 0 (lowest value) and

1 (best value).

F1i ¼ 2� precisioni � recalli
ðprecisioni þ recalliÞ (1)

Prediction

For prediction, each Worldview-3 tile of 16 384 9

16 384 pixels was cropped on a regular grid of

512 9 512 pixels and 64 neighbor pixels were added on

each side to create an overlap between the patches. If

there was a remaining blank portion – for example due

to the tile border – it was filled by the symmetrical image

of the non-blank portion. The prediction of both models

(forest-types and Cecropia tree segmentations) were made

on these images of 640 9 640 pixels, and the resulting

images were cropped to 512 9 512 pixels and merged to

reconstitute the 16 384 9 16 384 pixels WV-3 tile. This

overlapping method was used to avoid the artifact of pre-

diction on the border, a known problem for the U-

net algorithm (Ronneberger et al. 2015). To belong to a

given class, the pixel prediction value must be above or

equal to 0.5 for the given class.

Algorithm

The model was coded in R language (R Core Team, 2016)

with Rstudio interface to Keras (Chollet et al. 2015; Allaire

and Chollet 2016) and Tensorflow backend (Abadi et al.

2015). R code is available upon request. The training of

the models took ~2–20 h using Graphics Processing Unit

(GPU) on a Nvidia Quadro K6000 with a 12 GB dedicated

memory. Prediction using GPU of a single tile of

16 384 9 16 384 pixels (4.9152 km2) took approximately

35 min.

Index of disturbance

Here, we define disturbance inside natural forest frag-

ments as the presence of Cecropia trees, which are an

indicator of an important past disturbance (Zalamea et al.

2012; Guitet et al. 2018). A pixel inside a fragment is

considered as disturbed if it is closer to a Cecropia tree

than to the edge of the fragment. To measure the distur-

bance of the fragments, we developed an Ddisturbance,f, as

shown in eqn 2:

Ddisturbance;f ¼ 1�
Pnbpixelsf

i¼1

min ðmin ðDistanceEdgei;f ;DmaxÞ;min ðDistanceCecropiai;f ;DmaxÞÞ

Pnbpixelsf

i¼1

min ðDistanceEdgei;f ;DmaxÞ
(2)
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where f indicates an index of the fragment, nbpixelf
denotes the number of pixels of the fragment f, i denotes

an index of the pixel and Dmax is the maximum distance

of the disturbance to be considered. For a fragment f,

Ddisturbance,f is computed as the sum of the minimum dis-

tance of each pixel to the fragment edge or to a Cecropia

tree divided by the sum of the minimum distance of each

pixel to the fragment edge. The obtained value ranges

already between 0 and 1; however, it was subtracted to 1

to have Ddisturbance,f equal to 0 if there was no disturbance

(no pixels is closer to a Cecropia than to the border, ~
no Cecropia in the fragment) and 1 if the fragment was

totally disturbed (only Cecropia trees in the fragment). As

some Cecropia trees occur naturally within large frag-

ments, mainly after the fall of large trees, we set a tresh-

old Dmax to not artificially increase Ddisturb,f in the case of

natural disturbance. A distance to the edge or to Cecropia

trees above Dmax was set to Dmax. This is an estimation of

the natural distance to disturbance. Here, we used a Dmax

of 200 m that is a pixel at a distance >200 m of the edge

or of a Cecropia tree is considered undisturbed. The

index Ddisturbance,f is designed to account for the spatial

distribution of the Cecropia trees (Figure 5).

Results

Model convergence details and accuracies

Time for convergence was ~20 h for the forest-type model

and � 2 h for the Cecropia trees model. The best models

were obtained after 25 epochs with eight images per batch

for the forest-type model and 28 epochs with 16 images

per batch for the Cecropia trees model (Table 1).

For the forest-type segmentation, the overall accuracies

and Dice coefficient were 95.40% and 0.96, respectively,

as shown in Table 1. The overall accuracy of the Cecropia

trees segmentation was 97.09% with a dice coefficient of

0.86.

The natural forest class showed the best F1-score fol-

lowed by the eucalyptus plantation class (Table 2). Recall

Figure 5. Example of the Ddisturbance components and values for 10 simulated fragments of forest with different amount and spatial distribution

of Cecropia trees. In the first line (A–D), the number of Cecropia trees increases with a random spatial distribution. In the second line (A–D), the

border of the fragment containing Cecropia trees (sampled from the same random spatial distribution) increases and Cecropia trees get closer to

the center of the fragment. The last line depicts two same large fragments with only one Cecropia tree, at the same location in each; the only

difference is in the computation of the Ddisturbance index, with no distance threshold for the first fragment and with a distance threshold, Dmax, of

200 m for the second fragment.
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was higher in natural forests than in plantations, thereby

indicating a lower rate of false negative. Precision was

higher in plantations than in natural forests, thereby indi-

cating a lower rate of false positive. The F1-score of the

Cecropia trees segmentation was lower than for forest

types with a value of 0.80. For this class, F1-score, preci-

sion and recall values were similar (Table 2).

Some errors of labeling have been identified (Figure 6).

For the natural forest, the main errors appeared when the

tree cover had a homogeneous spectral response and con-

tained less shade due to a highly closed canopy

(Figure 6A and B). For the eucalyptus plantation, the

main errors appeared when tree plantation structure was

not visible and the tree appeared to have a random loca-

tion (Figure 6C). In Figure 6D, in the bottom left portion

of the image, the plantation lines were visible; on the

other hand, where the model made an error (top right

portion), the plantation structure has disappeared.

An example of Cecropia trees segmentation result with

F1-score and manual segmentation is presented in Fig-

ure 7. The crowns of Cecropia trees are small, mainly

<20 m. The border of the Cecropia is not sharp in the

image and there is a variation between the manual and

automatic segmentation (Figure 7). Some Cecropia trees

were missed during the production of the training sample

(Figure 7B). Even though this segmentation can be con-

sidered good by visual interpretation (Figure 7C), low

accuracy can result from inaccurate manual delineation

and a small size of the object. In Figure 7D, an error of

segmentation is due to the artifact (blue color) in one of

the WV-3 images.

Table 1. Numerical evaluation of the models and convergence details.

Model Epoch Batch Training sample Validation sample IoU OVERALL accuracy

Forest types 25 8 6089 1522 0.960 95.40

Cecropia trees 28 16 1946 486 0.861 97.09

IoU, intersection over union.

Table 2. F1-scores of the segmentation for natural and eucalyptus

forests as well as for Cecropia trees.

Model Classes Precision Recall F1-score

Forest types Natural forest 0.961 0.971 0.966

Eucalyptus plantation 0.971 0.928 0.949

Background 0.951 0.929 0.940

Cecropia trees Cecropia trees 0.808 0.801 0.804

Background 0.985 0.983 0.984

Figure 6. Example of classification errors in red during the

segmentation of natural forest (A and B) and eucalyptus plantation (C

and D). The remaining parts of the images were well-classified.
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Figure 7. Example of validation images (128 9 128 pixels) for

Cecropia trees with manual delineation in orange and the U-net

delineation in green (A–D). Satellite image courtesy of the

DigitalGlobe Foundation.
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Regional results

We found that the region had 44.80% of forest cover in

2017 (82 248.52 ha), constituted of 78.68% of natural

forest and 21.31% of eucalyptus plantations (Figure 8). In

comparison, MapBiomass mapped only 36.94% of forest

cover in 2017, which comprised 72.90% of natural forest

and 27.10% of eucalyptus plantation. Furthermore, 0.95%

of the natural forests are covered by Cecropia trees, which

represents a total cover of 612.48 ha.

Based on our estimation of forest types, we found that

the gain of tree cover of the region between 2000 and

2016 from the Global Forest Change map was mainly

constituted of eucalyptus plantation (83.31%) and only

16.69% was natural forest regeneration. Similarly, with

the estimation using MapBiomas, the gain of the forest

cover constituted of 87.64% of eucalyptus plantations and

12.36% of natural regeneration.

The mean tree cover in 2000 from the Global Forest

Change map was 71.04% for all forest types, 46.09% for

plantations and 76.71% for natural forests. With the

MapBiomas forest type classes, the mean tree cover was

77.64% for all forest types, 50.49% for plantation and

86.02% for natural forest.

Forest fragmentation and degradation

We found 2791 fragments of natural forest with an area

larger than 1 ha, which represents 93% of all the seg-

mented natural forest (Figure 9). The median size of the

fragment was 3.07 ha, the 90th percentile was 22.45 ha

and the largest fragment had an area of 15 107.80 ha.

This largest fragment is located in the south-east and

encompasses the Serra do Mar State Park, which is

currently the largest remaining fragment of the Atlantic

Forest.

We found that 0.95% of the natural forest fragments

were covered by Cecropia trees (612.48 ha). However, the

distribution of Cecropia had a high variability between

the fragments, as shown by the value of Ddisturbance,

(Figure 9). Fragments with a high disturbance present a

Ddisturbance close to 1. While the median and mean values

of Ddisturbance are low, 0.09 and 0.17, respectively,

Ddisturbance tends to increase with fragment sizes

(Figure 10). A majority of the less disturbed fragments

has an area below 10 ha. On the other hand, most of the

large fragments have a Ddisturbance of above 0.2.

Two fragments with contrasted values of Ddisturbance are

presented in Figure 11. In fragment Figure 11A, 118

Cecropia trees have been identified by the U-

net algorithm, thereby indicating important past distur-

bance. Fragment Figure 11B contains only two small

Cecropia trees.

Discussion

Mapping of forest types

In the studied region, the U-net network identified natu-

ral and eucalyptus forests with an overall accuracy of
Figure 8. Spatial distribution of natural forest and eucalyptus

plantation obtained using the U-net Network.

Figure 9. Natural forest fragments identified by U-net network over

the region. The color of the fragment represents the value of the

index of disturbance, Ddisturbance. Cloud mask is represented in

gray. The red boxes show the location of the two fragments

presented in Fig. 11.
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above 95%. In comparison, overall accuracies of MapBio-

mas were 88.45% for natural forests and 77.7% for forest

plantations. In our study, the high performance of the U-

net model for this segmentation could be explained by

the spectral values and textural information of the forest

types, as shown in Figure 2, which are identifiable/separa-

ble by an human eye on an RGB image. As the region

contains a lot of eucalyptus plantation, the training sam-

ple contains eucalyptus plantations at different stand ages.

For eucalyptus plantations, one of the important features

is the line of plantation. When some eucalyptus die or

when the plantation is old and the line of the plantations

is not so visually evident, the model tends to make some

errors (Figure 6). For the natural forests, one of impor-

tant features for the U-net appears to be the presence of

shade, and the model occasionally predicts very large

homogeneous crowns without shade as background, likely

predicted as pasture (Figure 6). At the spatial resolution

of 0.3 m, we found ~8% more forests than the forest

mapping at 30 m of 2017 from MapBiomas (44.80% vs.

36.94% respectively). This is expected, as the pixels must

have a high tree cover to be classified as forest, and Map-

Biomas is not able to delineate the border of the forest

accurately, due to its 30-m spatial resolution. This was

also confirmed by the higher tree cover values for the

forested pixels of MapBiomass. It must be noted that the

obtained results could be further improved with a larger

training set. We acknowledge that the U-net model is not

necessarily the best method to produce vegetation/land

cover mapping larger than the regional scale. Recent work

using mainly Landsat images and non-deep learning

methods (Hansen et al. 2013; MapBiomas, 2018) or other

deep learning methods (Jia et al. 2017; Kussul et al. 2017;

Lyu et al. 2018) also show high performance and can

cover larger areas. However, in the case of a regional

study using one or two very high resolution Worldview

images and with the objective of mapping objects inside a

particular vegetation class, such as in this study, we

Figure 10. Forest degradation index Ddisturbance variation with the

fragment area. The tendency curve in red was made with a cubic

smooth spline. Fragments with a high disturbance present a

Ddisturbance close to 1 and when there is no disturbance, close to 0.

Figure 11. Forest fragments with high (A) and low (B) levels of disturbance. Segmentation of Cecropia trees obtained with the U-net model and

used to compute Ddisturbance are represented in red. Satellite image courtesy of the DigitalGlobe Foundation.
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recommend producing the vegetation class model with U-

net. First, because U-net has a demonstrated high perfor-

mance for very high resolution image segmentation [this

study and Huang et al. (2018)]; second, because it enables

production of a vegetation mask at very high resolution;

and finally, because U-net is relatively easy and conve-

nient to use.

Implications for land use analysis

With a Worldview-3 image and with a few days of work

to prepare the training images, train the model and make

predictions, a reliable information on the land use can be

produced by a single person. This land-use classification

does not exist in tropical regions from available global

maps at this spatial resolution. It is important to map the

forest types for this region in order to interpret the large

increase of 5–30% of the tree cover observed since the

1990s (FAO, 2010; Hansen et al. 2013; Silva et al. 2018)

and to understand its implication in the context of global

carbon change and conservation. While having a large

amount of new growing forests is positive for the carbon

balance, the fact that 80% of these new growing forests

are eucalyptus plantation is a negative aspect for biodiver-

sity. When producing the training dataset, the forest bor-

ders were easily assessed, as both forest types are dense

and the other land-use types are spectrally different

(mainly human construction or pasture). For sparser veg-

etation physiognomy with trees such as those in the

Savannah formation, it may be more difficult to produce

the training sample and it might be necessary to map all

individual trees and see how crown size and density of

trees vary across the landscape.

Recognition of C. hololeuca trees

In this study, the first regional distribution map of all

individuals of a natural tree species with a multispectral

remote sensing image was produced using a U-net net-

work. Only an estimated 0.01% of total area of the Atlan-

tic Forest has been surveyed since 1945 through field

studies (1817 ha) (de Lima et al. 2015); here, C. hololeuca

has been mapped in 64 713 ha of natural forests, which is

� 0.35% of the Atlantic forest remnants. This map of

the species C. hololeuca had an overall accuracy of 97%.

This high accuracy could be explained by the unique

spectral values of the Cecropia leaves and the structure of

the crown, as shown in Figure 3, thereby rendering them

identifiable even for a human eye in an RGB image which

is not the case for most of the tree species. Furthermore,

contrary to more common segmented objects, such as

cars, animals or buildings, individuals of a tree species

theoretically have the same spectral response, which is

linked to both leaf biochemical composition and architec-

ture of the species (Asner et al. 2015; Ferreira et al.

2016). This might help the network to identify the trees.

The accuracies of the segment border (F1-score = 0.804)

were not high for the following reasons: First, because of

the difficulty of accurately delineating the border of the

Cecropia trees, which is not sharp. In comparison, the

border of a car in an image is easier to distinguish and to

accurately delineate. Second, due to the small size of the

crown, each pixel contribution is important in relation to

the crown size, that is, missing only a few pixels strongly

affects the value of the F1-score. In the Neotropics, sev-

eral other species of the genus Cecropia have bright leaves,

including Cecropia telealba in Colombia (Franco-Rosselli

and Berg 1997; Kattan and Murcia 2012) and Cecropia

telenitida in the central and northern sections of the

Andes Mountains (Franco-Rosselli and Berg 1997), and

are strong candidates for mapping with the U-net

method.

Consideration for tree species mapping

Recent studies on tree counts and species identification

with deep learning employ only RGB bands ((Li et al.

2017; Onishi and Ise 2018) and this paper). For other

green vegetation, tree species and large plants, the gain of

adding other multispectral bands in the model, bearing

in mind that it will add a significant number of parame-

ters to the model and increase computation time,

remains to be explored. In comparison with recent

object-based image analysis for identifying tree species in

forests (Clark et al. 2005; Warner et al. 2006; Feret and

Asner 2013; Fassnacht et al. 2016; Ferreira et al. 2016),

the main advantage of the U-net method is that no pre-

vious individual delineations of tree crowns are needed,

while its main disadvantage is that it requires a lot of

training images (in our case between 1000 and 10 000).

To create the sample for training, it is required to be able

to identify the tree species in the image. This implies that

the targets have a certain size and a particular spectral

response or structure. We also recommend using images

with 0.3 m of spatial resolution. In our region, the

method will be tested with other species that can be iden-

tified in the VHR image, such as bamboos or the criti-

cally endangered Araucaria angustifolia. Some tree species

could also be mapped during the reproduction period, if

the tree is visible from space when flowering, such as the

species Tibouchina mutabilis in the Atlantic Forest.

C. hololeuca is distributed across the Atlantic forest

biome (Franco-Rosselli and Berg 1997), but for a species

with a narrower distribution range, we might be able to

fully describe its specific climatic envelope with its real

occurrence data (He et al. 2015). Furthermore, the large
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majority of tropical forest tree species are locally very

rare, with adult population sizes <1 per hectare (ter

Steege et al. 2013, 2015), so that it is difficult to derive

population sizes with field surveys based on ~1 ha plots.

For those tree species clearly identifiable in imagery, the

coordinates of all adults in a region could be used to

guide botanical collections or for genetics analysis of par-

enting, for example. Given that information on wide-

spread, precise locations of species is generally

unobtainable from field studies, applying methods such

as the one developed here could have great value in the

urgent task of describing and mapping rare, poorly

known, and potentially threatened tropical tree species

(ter Steege et al. 2015).

Natural forest fragmentation and
disturbance

Although we are still far from recognizing all the species,

species such as C. hololeuca which describe the disturbance

and early successional stage of the forests can be accurately

mapped (Figure 11). Cecropia is a reliable indicator of

short-term disturbance, since it may persist in the canopy

from half a century to a century depending on the lifetime

of the species (Zalamea et al. 2012; Guitet et al. 2018).

Their mapping could help to assess and understand forest

disturbances at regional scale, with information not acces-

sible by another means; for example, if disturbance was

older than the first satellite observations, and this with

only one very high resolution image. In the future, it could

be interesting to map an end-succession species to

improve the understanding of the successional stage of

these endangered forest fragments. The index based on the

distribution of species in the fragment revealed informa-

tion that is not accessible from the classical fragment anal-

ysis, which is based on size, shape and connectivity of the

fragments (Vogt et al. 2007, 2009; Strassburg et al. 2016).

For example, here, we show that fragments above 10 ha

can present a high degree of disturbance (Figure 10). We

have to acknowledge that the index Ddisturbance works on a

fragment scale and does not account for the diversity of

forest physiognomy within a fragment; for example, if the

fragment contains both old growth forest and secondary

forest. The largest fragment in the south-east, as shown in

Figure 9, is crossed by roads and other human-made bar-

riers, such as fences that are not detected below the tree

cover; thus, it is still likely that we underestimated forest

fragmentation. As fragmentation is increasing over all

tropical forests (Taubert et al. 2018), our index Ddisturbance,

in addition to the classical fragmentation analysis, can pro-

vide valuable information to guide the conservation of the

Atlantic Rain Forest in particular and Neotropical forests

in general.

Considerations for the processing

As shown in this study, automatic tropical forest mapping

may be feasible in the near future, but there are still limi-

tations from both the hardware and the model. The raster

of one band of the full region at 0.3-m spatial resolution

contains over 22 billion pixels. Consequently, the images

must be processed in smaller tiles, which adds significant

computational time to the analysis. Another limitation is

that the geographical information of the original image is

not conserved during the run of the model, because these

models are still not designed for georeferenced imagery.

The geographical information of the image must be saved

before the run and added after the prediction, which adds

computational time as data has to be written several times

on the hard drive. To speed-up the predictions step, the

model can be run on larger images than the image used

for training. For example, the prediction were made from

640 9 640 pixels images, which was the maximum size

supported by our GPU, while the models were trained

with images of a maximum size of 256 9 256 pixels.

Finally, the model required the use of a GPU with at least

three Gigabytes of dedicated memory for both training

and testing, which is not yet of standard installation in

personal computers. In this study, the model ran on a

GPU Nvidia K6000 of 2013 with 12 Gigabytes of dedi-

cated memory and with a compute capacity of 3.5, and

faster processing time might be expected with new gener-

ation of GPUs.

Considerations for generalization and
scalability

The largest image produced by the Worldview-3 satellite

covers 7336 km², 112 9 65.5 km, with the collecting sce-

nario ‘Large area collect’ (DigitalGlobe, 2019). Due to this

limitation, to cover a region larger than this size, several

Worldview-3 images will be needed; and, as Worldview

satellites do not cover all the Earth at regular intervals, they

will have different days, hours, solar and sensor angles.

Consequently, the reflectance of targeted objects will vary

between the images and new training samples will be neces-

sary. Furthermore, forests can display different features.

For example, if in one image forests contain Cecropia trees,

and in the other they contain pink-flowering trees, each

feature must be presented to the model for it to be able to

predict pink trees and Cecropia trees as forest features. New

training samples will have to be produced for new images

but can be added to the first training set to train only one

multiclass model for all images (and not one model per

image or per feature). As the U-net model is scale depen-

dent, a trained model at a defined resolution is not

expected to work with another spatial resolution. Further
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work is needed to compare U-net performances for tree

species and vegetation mapping with other convolutional

neural networks that can handle the task of semantic label-

ing in very high resolution images (He et al. 2017; Maggiori

et al. 2017; Huang et al. 2018).

Considerations for atmospheric corrections

Very thin clouds which are transparent and contain

reflectance information of the ground targets (Bai et al.

2016) might be treated during data augmentation. Further

analysis should be made to analyze and simulate the

reflectance of the ground targets above the very thin

cloud cover. Other reflectance variations due to sun-view

angle effects could also be included in the data augmenta-

tion, as some of these effects have been studied for dec-

ades, such as the bidirectional reflectance characteristics

of vegetation (Ranson et al. 1985). The simulation of

atmospheric variations and sun-view angle effects on the

reflectance during the data augmentation remains to be

explored and is of primary importance for the develop-

ment of deep learning methods for remote sensing.

Conclusions

In this work, we showed that the deep learning algo-

rithm U-net (Ronneberger et al. 2015) presents a great

potential in remote sensing for ecology. U-net convolu-

tional networks accurately segmented natural forest and

eucalyptus plantation, and, for the first time, all adult

individuals of a natural tree species were mapped at a

regional scale with very high resolution multispectral

images. The mapping of individual trees provides access

to new information on forest ecosystems at a regional

scale to ecologists and forest managers, such as the dis-

turbance index developed here. The network will be

further improved to work with images taken in differ-

ent seasons, solar/view angles and atmospheric condi-

tions, by increasing the training sample and developing

a data augmentation step specific to remote sensing

images.
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