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Abstract

Given anticipated climate changes, it is crucial to understand controls on leaf temper-

atures including variation between species in diverse ecosystems. In the first study of

leaf energy balance in tropical montane forests, we observed current leaf temperature

patterns on 3 tree species in the Atlantic forest, Brazil, over a 10‐day period and

assessed whether and why patterns may vary among species. We found large leaf‐

to‐air temperature differences (maximum 18.3 °C) and high leaf temperatures (over

35 °C) despite much lower air temperatures (maximum 22 °C). Leaf‐to‐air tempera-

ture differences were influenced strongly by radiation, whereas leaf temperatures

were also influenced by air temperature. Leaf energy balance modelling informed by

our measurements showed that observed differences in leaf temperature between 2

species were due to variation in leaf width and stomatal conductance. The results sug-

gest a trade‐off between water use and leaf thermoregulation; Miconia cabussu has

more conservative water use compared with Alchornea triplinervia due to lower tran-

spiration under high vapour pressure deficit, with the consequence of higher leaf tem-

peratures under thermal stress conditions. We highlight the importance of leaf

functional traits for leaf thermoregulation and also note that the high radiation levels

that occur in montane forests may exacerbate the threat from increasing air

temperatures.
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1 | INTRODUCTION

The surface temperature of the Earth is increasing (Rahmstorf, Foster,

& Cahill, 2017) and set to continue increasing into the future (Collins

et al., 2013). The majority of tropical forests show a trend of increas-

ing air temperature over the past 35 years, which is particularly strong
- - - - - - - - - - - - - - - - - - - - - - - - - - -
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in South America with recent increases up to 0.5 °C per decade

(Figure S1). Temperature extremes are also increasing and are pre-

dicted to increase in the coming century (Coumou & Robinson,

2013). Although it is known that temperature influences plant func-

tioning, the response of plants to increasing temperature and variation

between species is a major uncertainty (Teskey et al., 2015). Tropical
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forests are particularly important in this regard as they are a consider-

able store of terrestrial carbon (Pan et al., 2011), potentially already

function near their maximum temperature (Doughty & Goulden,

2008) and given their location cannot be replaced by species from

lower latitudes. The biodiversity of tropical montane forests, which

house many endemic species with restricted ranges, may be at par-

ticular risk from higher temperatures due to limits on upslope

migration, especially for tree species in forests occurring on moun-

taintops (Phillips, 1997). Modelling studies suggest increasing tem-

peratures are also likely to have a negative effect on tropical

forest vegetation carbon; however, the extent of projected impact

varies greatly between different models (Galbraith et al., 2010;

Huntingford et al., 2013) as do the physiological mechanisms

behind the declines (Galbraith et al., 2010).

Temperature can impact plant physiology both directly, by

influencing rates of photosynthesis and respiration and indirectly by

altering the ambient vapour pressure deficit (D; Lloyd & Farquhar,

2008). D increases with an increase in air temperature (TA) if relative

humidity (h) stays constant, and stomatal conductance (gs) typically

declines with increasing D (Leuning, 1995) to avoid excessive water

loss. The reduction in gs with D has the consequence of reduced

CO2 concentration within the leaf. The photosynthetic optima of

plants are typically near the mean maximum ambient temperature,

showing the acclimation of plants to their environment (Slot & Winter,

2017). The temperature of the leaf tissue itself is the relevant temper-

ature for the control of leaf physiological processes rather than TA.

High leaf temperatures (TL) can induce damage to photosynthetic

machinery; above c. 35 °C thylakoid membranes have been observed

to structurally change (Gounaris, Brain, Quinn, & Willams, 1983,

1984), and above 40 °C photosystem II (PSII) may become deactivated

and the electron transport rate reduced (Allakhverdiev et al., 2008).

Chlorophyll fluorescence parameters to assess heat tolerance of PSII

show critical temperature thresholds in the region of 45–60 °C, with

significant variation between species (O'Sullivan et al., 2017; Sastry

& Barua, 2017). Irreversible thermal damage to photosynthetic

machinery has been observed to occur at 52 °C in a tropical species

(Krause et al., 2010).

Extremes of microclimate can lead to leaf temperatures that are

markedly different from TA. For example, leaf temperatures up to

10 °C above air temperatures when leaves were brightly lit have

been observed in the Amazon (Doughty & Goulden, 2008) and in

Panama (Rey‐Sanchez, Slot, Posada, & Kitajima, 2016), and Slot,

Garcia, and Winter (2016) found leaf temperatures of a Ficus insipida

regularly exceeded 40 °C and even reached 48 °C during a 3‐week

period in Panama. Yet despite these striking patterns of leaf temper-

atures, and the on‐going and anticipated increases in air tempera-

tures, there are few datasets examining fluctuations of leaf

temperatures in situ in tropical forests and, to our knowledge, none

in tropical montane forests.

Leaf energy balance theory can be used to address the drivers of

TL in a mechanistic approach (e.g., Michaletz et al., 2016). Developed

from the Penman energy balance approach to evapotranspiration

(Penman, 1948), the leaf energy balance equation (see Section 2,

Equation (3)) estimates the leaf‐to‐air temperature difference (ΔT)

for given microclimatic and leaf‐specific variables (Jones, 1992). The
leaf energy balance shows that ΔT is dependent on the net energy

provided (or lost) by radiation and the energy lost through transpira-

tion. The effects of these fluxes on ΔT depend on leaf shape and

physiology through the boundary layer and stomatal resistances to

water transport. Stomatal resistance is dependent on stomatal activity

and boundary layer resistance increases with leaf width (see Section

2). Hence, although ΔT is strongly influenced by microclimatic condi-

tions (in particular radiation and D), leaf traits (width and stomatal

conductance) can also play a role in regulation of leaf temperature.

In addition, leaves can alter their physical position through changes

in angle and/or orientation to increase or decrease the amount of

radiation received.

Leaf structural traits (leaf mass per area [LMA] and leaf dry matter

content [LDMC]) and stomatal conductance (gs) influence the time

required for leaf temperature to change following a change in the

environment (the thermal time constant [τ]; Jones, 1992). Leaves with

a long τ will show smaller temperature changes in a fluctuating envi-

ronment, maintaining the leaf temperature closer to the mean air tem-

perature than a leaf with a small τ, which will track fluctuation in air

temperature (Michaletz et al., 2015).

Given the diversity of leaf structures and physiology observed

within and among tropical forest species (e.g., variation in leaf[let] area

over five orders of magnitude for a large sample of tropical species;

Wright et al., 2017), it is possible that there will be diversity in leaf

strategies with regard to temperature (Michaletz et al., 2015). This

means that the impacts of potential future environmental changes

may vary between species even within a single biome. Future com-

bined atmospheric changes of increasing CO2 and increasing TA

could be particularly important for TL, as plants tend to respond

to increasing CO2 by reducing gs (Way, Oren, & Kroner, 2015).

Reducing gs decreases water use but also has the consequence of

increasing leaf temperature (Barker et al., 2005; Drake, Gonzàlez‐

Meler, & Long, 1997) and can lead to premature leaf senescence

under heat wave conditions (Warren, Norby, & Wullschleger,

2011). Increases in TA could be particularly important under fluctu-

ating and extreme conditions (e.g., heat waves), increasing the

occurrence of leaves reaching or exceeding threshold temperatures

resulting in leaf damage.

We present an observational study of leaf temperatures in a

highly threatened tropical forest region—the Atlantic forest, among

the most diverse and threatened of biodiversity hotspots (Colombo

& Joly, 2010; Myers, Mittermeier, Mittermeier, da Fonseca, & Kent,

2000). Our mountaintop study site is home to many endemic species.

Humans have exploited the Atlantic forest for 500 years resulting in a

highly fragmented landscape (Joly, Metzger, & Tabarelli, 2014) that

reduces possibilities for species migration. Hence, a greater under-

standing of forests in this region is of great interest given their high

threat level. We focus here on determining and understanding inter-

specific differences in leaf temperatures caused by differences in leaf

traits. Our approach aims to begin to reveal whether or not trees are

likely to be able to cope with future conditions, and the extent to

which species identity is likely to be important. This is a step towards

an understanding of the resilience of tropical trees and is part of a

broader effort to assess the effects of stressors on remaining Atlantic

forests and their ability to recover.



FIGURE 1 Schematic of field data collection showing positions of
microclimate measurements and leaves sampled for temperature.
PAR = photosynthetically active radiation
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We used a narrow canopy tower to access leaves of three

trees each of different species (Alchornea triplinervia [Spreng.] Mull.

Arg. [Euphorbiaceae], Miconia cabussu Hoehne [Melastomataceae],

and Guapira opposita [Vell.] Reitz [Nyctaginaceae], hereafter

referred to by genus only). We monitored leaf temperature and

microclimate relevant to leaf energy balance over a period of

10 days and quantified the stomatal behaviour and structural leaf

traits of the sample trees. With this dataset, we aim to answer

the following questions:

i. What are the current patterns of leaf temperature of the Atlantic

forest species Alchornea, Miconia, and Guapira under fluctuating

microclimatic conditions?

ii. Are there differences in leaf thermoregulation between the

species?

iii. To what extent do leaf traits (width, stomatal conductance) and

microclimate (radiation, TA, D, wind speed) determine leaf

temperatures?
2 | MATERIALS AND METHODS

2.1 | Study site

The field study was carried out in the Serra do Mar State Park, São

Paulo, Brazil. The park is home to the largest contiguous patch of

Atlantic forest remaining, running along a steep coastal mountain

range. The study site (23.3254S, 45.0938W) is located within a

1‐ha permanent plot at 1,000‐m elevation. The vegetation is mid‐

successional secondary forest, regenerating from clear felling for

charcoal before the establishment of the park in 1977 (Marchiori,

Rocha, Tamashiro, & Aidar, 2016). The forest is classified as mon-

tane moist dense forest (Vieira et al., 2011), mean annual precipita-

tion is 2,300 mm with a dry season in July and August, mean

annual temperature is 17 °C (Joly et al., 2012), and fog occurs fre-

quently (Rosado, Oliveira, & Aidar, 2010). Canopy height of emer-

gent trees reaches 30 m. Data collection was carried out

between October 1, 2016 and October 10, 2016.
2.2 | Microclimate measurements

A narrow 27‐m‐high tower was used for access to the canopy and

microclimate measurements (TA, photosynthetically active radiation

[PAR], relative humidity [h], and wind speed [U]) were collected to

detail the microclimate vertical profile (Figure 1). As the tower is just

30 cm wide and tree branches are within arms reach of the tower

(see Figure S2d), we consider that the presence of the tower likely

has only minimal influence on the microclimate of the sampled leaves.

From 18 m above the ground, at the height of the highest leaves adja-

cent to the tower, 16 PAR sensors were suspended from the tower at

c. 1‐m intervals, with an additional sensor positioned at 25 m above

the ground. Sensors were made following Fielder and Comeau

(2000) using gallium arsine phosphide photodiodes (G1118, Hamama-

tsu, Japan) and calibrated against a LI‐COR 190 quantum sensor (LI‐
COR Inc., Nebraska, U.S.A.). PAR sensors were positioned on plastic

supports in the horizontal plane. In addition, seven thermistors (107,

Campbell Scientific, Utah, U.S.A.) to measureTA were deployed in radi-

ation screens spread through the vertical profile (heights 1.5, 5, 7.5,

10, 12.5, 15, and 18 m; Figure 1). PAR and TA data were measured

and recorded at 10‐s intervals using two CR800 data loggers with

AM 16/32 multiplexers (Campbell Scientific, Utah, U.S.A.). Four data‐

logging h sensors (RHT10, Extech, Massachusetts, U.S.A.) measured

and recorded at 1‐min intervals at heights 2, 8, 12.5, and 18 m. Four

sonic anemometers (Sonicwind) measured U every 0.5 s at heights of

1.5, 6.5, 11.5, and 25 m, and 10‐s averages were produced for each

height. U for leaves positioned above 11.5‐m height was linearly inter-

polated between the 25‐ and 11.5‐m measurement.

Vapour pressure deficit (D) was calculated from TA and h (Camp-

bell & Norman, 1998),

D ¼ esat· 1−hð Þ; (1)

esat ¼ a· exp·
bTA

TA þ c

� �
; (2)

whereTA is in °C, h is relative humidity (as a proportion), esat is saturat-

ing vapour pressure in kPa, and a, b, and c are constants (a = 0.611,

b = 17.502, c = 240.97).

Due to a sensor fault, h was available only from October 5, 2016

to October 10, 2016. To estimate D within the profile for measure-

ment days prior to this, we estimated h within the profile based on

the observed relationship between TA and h at the four measurement

heights (R2, .76–.87) from the available data collected over 6 days.

2.3 | Sampled species

Both Alchornea andMiconia are overstorey species, whereas Guapira is

found in the subcanopy (Guilherme, Morellato, & Assis, 2004), and the

species are ranked second, fifth, and sixth, respectively, in terms of

abundance in the plot (Marchiori et al., 2016). All species are early suc-

cessional (Marchiori et al., 2016) and are found in nearby old‐growth
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forest. Alchornea and Guapira are present at lower elevations in the

park (Joly et al., 2012; Rosado, Oliveira, Joly, Aidar, & Burgess,

2012). The species cover a range of leaf sizes; Guapira has the smallest

leaves (notophyll), followed by Alchornea (mesophyll), with the largest

leaves for Miconia (platyphyll).
2.4 | Leaf temperature measurements

To measure leaf‐to‐air temperature differences (ΔT, also called leaf

temperature excess in the literature) we followed the two‐junction

thermocouple design of Singsaas and Sharkey (1998). This approach

has the advantage of more accurately measuring ΔT than performing

measurements of absolute TL and TA separately. Two long (15‐cm

length) constantan fine wires (0.07‐mm diameter) were soldered to

either end of a short (3‐cm length) copper fine wire (0.07‐mm diame-

ter). These thermocouples produce a voltage proportional to the tem-

perature difference between the junctions. Thermocouples were

individually calibrated by inserting one junction into sand in a temper-

ature controlled dry bath (TCBD‐02, Cleaver Scientific, U.K.) with the

second junction in the air c. 2 cm above the bath. The temperature of

the bath and the air were each measured with two thermistors. Four

different temperature differences between the bath and air were pro-

duced (~0, 5, 10, and 12 °C). Data for the calibration were selected

during periods with a constant dry bath temperature (i.e., excluding

periods when the bath was heating up or cooling down).

Between September 30, 2016 and October 3, 2016 thermocou-

ples were installed on 10 Alchornea leaves, 9 Miconia leaves, and 4

Guapira leaves. Selected leaves were fully expanded and mature, but

not senescent, within reach from the canopy tower, and spread

through the vertical profile (Figure 1). The thermocouple junction to

measure leaf temperature was secured to the abaxial mesophyll sur-

face (avoiding any large veins) near to the midrib using surgical tape

(Transpore, 3M, Minnesota, U.S.A.). The second junction was

suspended in the air c. 2 cm below the leaf. Additional cabling was

cable tied to a twig near to the leaf (or the petiole in the case of

Miconia) and to the tower. This attachment procedure enabled the

majority of thermocouples to remain attached to leaves during wind

and rain (see Figure S2 for photographs of the equipment installation).

The petioles of two leaves, both of Miconia, snapped during the mon-

itoring period. Table S1 gives details of the sampled leaves. ΔT was

measured and recorded at 10‐s intervals using a CR800 data logger

with AM 16/32 multiplexer (Campbell Scientific, Utah, U.S.A.) until

October 11, 2016.
2.5 | Spot measurements

In addition to continuous measurements of ΔT from the thermocou-

ples, instantaneous spot measurements were made of leaf temperature

using an infrared (IR) thermometer (62MAX+, Fluke, Washington,

U.S.A.) on the adaxial and abaxial leaf surfaces, PAR at the adaxial leaf

surface (accounting for leaf angle and orientation) with a quantum sen-

sor (LightScout, Spectrum Technologies, Illinois, U.S.A.), and gs using a

porometer (SC‐1, Decagon Devices, Washington, U.S.A.). These mea-

surements were made in order to (a) validate the thermocouple data

against an independent TL measurement, (b) compare PAR received at
the leaf surface with that measured from the tower, and (c) investigate

variation in gs between species and over time. Spot measurements

were collected during daylight hours throughout the day on 6 days

between andOctober 4, 2016 andOctober 10, 2016. Stomatal conduc-

tance measurements could only be performed when the leaf surface

was dry. Hence, fewer spot measurements of gs were collected (213

in total, on average c. two measurements per leaf per day) compared

with leaf temperature on adaxial surface (785 in total, on average c.

six measurements per leaf per day), leaf temperature on abaxial surface

(398 in total, on average c. three measurements per leaf per day), and

PAR (350 in total, on average c. three measurements per leaf per day).

Measurements of gs with the SC‐1 porometer are completed in 30 s,

and as the response of stomata to a change in the environment is on

the order of minutes (e.g., Vialet‐Chabrand et al., 2017), we assume that

the leaf gs will not have changed due to the altered microclimate of the

porometer chamber within the measurement interval. Leaf angle (angle

to the horizontal) was measured sporadically (minimum of five mea-

surements per leaf) using a clinometer (Suunto, Finland). No spot mea-

surements were carried out during the night.

2.6 | Leaf trait measurements

All sampled leaves were collected and stored in moist plastic bags for

24 hr before fully rehydrating and measuring structural traits in the

laboratory at the Instituto de Botânica, São Paulo. Measurements

were performed of leaf thickness (mm) with a digital calliper, leaf area

(cm2) with leaf area meter (LI‐3100, LI‐COR, Nebraska, U.S.A.), leaf

mass (g), leaf width (cm), and leaf length (cm). Petioles were removed

before measurements. Subsequently, leaves were dried at 70 °C and

dry‐weight measured. These measurements were used to calculate

LMA (g/m2) and LDMC (g/g). For Guapira, the sample size for leaf

traits was 6 (rather than 4 as for leaf temperature).

2.7 | Leaf energy balance

With input of measured microclimate, stomatal conductance and leaf

width the leaf energy balance (Equation (3), Jones, 1992) can be esti-

mated to predict the leaf‐to‐air temperature difference (ΔTe, °C). It is

important to note that the leaf energy balance assumes no leaf heat

storage and that the leaf energy balance is considered to be in a

steady state. ΔTe was estimated from spot measurements to test if

ΔTe matched observations of ΔT when leaf surface PAR and gs were

directly measured, and from the continuous microclimate data with

gs estimated from the observed species‐specific relationships between

gs and D in order to assess the influence of microclimate and leaf spe-

cific variables on leaf temperatures using a large dataset. As the

Guapira leaves were not exposed to a large range of microclimates

due to their position in the understorey, we only consider ΔTe of

Miconia and Alchornea in the latter analysis.

ΔTe ¼ TL−TA

¼ rb;HR rb;W þ rl;W
� �

γRni

ρacpa γ rb;W þ rl;W
� �þ srb;HR

� �− rb;HRD

γ rb;W þ rl;W
� �þ srb;HR

; (3)

whereTL and TA are the leaf and air temperatures, respectively (°C), Rni

is the net isotropic radiation (W/m2, assuming the sky temperature is
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equal toTA measured at the nearest TA sensor to the leaf and sky emis-

sivity of 0.97), γ is the psychrometric constant (Pa/K), rb,HR is the

boundary layer resistance to heat and radiation and rb,W and rl,W are

the boundary layer and leaf resistances to water, respectively (all resis-

tances in seconds per metre), ρa is the density of dry air (kg/m3), cpa is

the specific heat capacity of dry air (1,012 J·kg−1·K−1), s is the slope of

relationship between temperature and saturated vapour pressure

evaluated at TA, and D is the vapour pressure deficit (Pa).

Leaf traits (gs and leaf width) are included in Equation (3) through

the leaf and boundary layer resistances. Leaf resistance to water, rl,W,

is the inverse of gs. Boundary layer conductance to heat or water, gb,H,

which is included in the determination of both rb,HR and rb,W, which

are both used in Equation (3), is dependent on leaf width (W, m) and

wind speed (U, m/s)

gb;H ¼ 0:0105 U
�
W

� �0:5
: (4)

Further details on the estimation of leaf energy balance are given

in Appendix S1.

The thermal time constant (τ, s) was defined following Michaletz

et al. (2016) as

τ ¼ φ·LMA·
cpw

LDMC·H
þ cpd−cpw

H

	 

; (5)

where φ, the ratio of projected to total leaf area, is 0.5 for flat leaves;

LMA is in kilograms per square metre; cpw is the specific heat capacity

of water (4,181 J·kg−1·K−1); and cpd is the specific heat capacity of dry

leaf matter (J·kg−1·K−1). cpd varies by species and, here, we use

2,814 J·kg−1·K−1, the mean of seven tropical tree species from

Jayalakshmy and Philip (2010). H is a heat transfer coefficient (W·m
−2·K−1) accounting for convection, radiation, and transpiration

(Michaletz et al., 2016).

H ¼ ρacpa gb;H þ gb;R þ gss=γ
� �

; (6)

where gb,H and gb,R are the boundary layer conductance to heat

and radiation, respectively (both are in metres per second; see

Appendix S1). τ varies over time due to its dependence on gs and

boundary layer resistance and was estimated from spot

measurements.

2.8 | Leaf boundary layer resistance

Initial estimations of the leaf energy balance using Equation (3)

showed that when ΔTe was evaluated at low wind speeds (<0.5 m/

s), the values were overestimated compared with the observed ΔT.

Using Equations (4) and S5 to estimate the boundary layer resistance

to water (rb,W), there is a steep increase in rb,W below wind speeds of

0.5 m/s (Figure S3). To test if these high resistances were supported

by the data, we solved the leaf energy balance equation for rb,W and

estimated rb,W using the observations of ΔT (see Appendix S2). Plot-

ted against wind speed, the estimated rb,W was lower than predicted

by Equations (4) and S5 at low wind speeds (Figure S3). Hence, we

reparameterized constants from Equation (4) using the rb,W estimated

from the leaf energy balance and observed wind speed and leaf

width (see Appendix S2). Parameter estimation was performed
separately for Miconia and Alchornea (there was not sufficient data

for parameter estimation of Guapira) using non‐linear least squares

(R function nls).

In order to have accurate estimates of rb,W from the energy bal-

ance, it is essential that all microclimate inputs are correct. PAR was

measured at various points from the tower (Figure 1). Examination

of the spot measurement data showed that PAR measured by the

nearest sensor suspended from the tower (maximum 1‐m distance

from leaf) occasionally strongly overestimated or underestimated leaf

surface PAR (Figure S4) as they are not measured at precisely the

same location, angle, or orientation, and PAR shows high spatial vari-

ability. To select only data where PAR measured from the tower

appropriately represented PAR at the leaf surface, the daytime data

were split into 20‐min periods and ΔTe estimated for every 10‐s

datapoint. Linear regression was then used to identify periods where

ΔTe matched measured ΔT, selecting only periods where the slope

of the relationship between ΔTe and ΔT was 1 ± 0.3 and the intercept

was ±2 °C. On the basis of this selection procedure, we identified 20%

of the dataset (c. 150,000 data points) considered to have representa-

tive PAR measurements. This approach does not entirely eliminate

noise from the dataset as within the 20‐min period, there can still be

some erroneous data points.
2.9 | Data analysis

Linear mixed‐effects models with leaf as a random factor were

used for all statistical analyses including repeated measurements

of the same leaf using the R package nlme (Pinheiro, Bates,

DebRoy, Sarkar, & Core Team, 2017). R2 for mixed‐effects models

are given using either the marginal pseudo R2 that accounts for

fixed factors only or conditional pseudo R2 (Nakagawa & Schielzeth,

2013). The marginal pseudo R2 is used unless otherwise stated, and

R2 values were calculated using the function provided in the R

package MuMIn (Bartoń, 2016). Statistical analyses comparing

between species using single values for each leaf used analysis of

variance for three species comparisons and t test for two species

comparisons.

Relationships between gs and D were analysed for each species

using a linear mixed‐effects model with leaf as a random factor. The

relationships produced were used to estimate a time series of gs for

each leaf based on D. The intercept of the gs–D relationship was thus

leaf specific and the slope species specific.

To compare leaf temperatures under comparable microclimate

conditions data were first selected for 20‐min periods where ΔTe
matched measured ΔT to ensure that microclimate variables are repre-

sentative of the leaf surface, as for leaf boundary layer resistance (see

above) but using the species‐level parameterization of rb,W to estimate

ΔTe. The selected dataset was then subsetted according to the micro-

climate (PAR, TA, and U) for each leaf. We produced subsets of ΔT

under low PAR and TA (PAR, 50–150 μmol·m−2·s−1; TA, 13–15 °C),

medium PAR and TA (PAR, 50–150 μmol·m−2·s−1; TA, 13–15 °C), high

PAR and TA (PAR, 1,000–1,300 μmol·m−2·s−1; Ta, 18–20 °C), and very

high PAR (PAR, 1,600–1,900 μmol·m−2·s−1; TA, 18–20 °C), all at wind

speed of 0.5–1.5 m/s. Differences in ΔT between species for each



FIGURE 2 Time series of microclimate and leaf‐to‐air temperature
difference on October 8, 2016. (a) Photosynthetically active

radiation (PAR), (b) air temperature, (c) vapour pressure deficit, and (d)
leaf‐to‐air temperature difference for leaves of Alchornea (A6), Miconia
(M1), and Guapira (G3). Colours refer to measurement heights
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microclimate were evaluated with linear mixed‐effects models with

leaf as a random factor.
TABLE 1 Leaf temperature variables for three species

Mean ± SD

Alchornea (n = 10)

Daytime minimum TL (°C) 7.71 ± 0.63

Daytime mean TL (°C) 15.98 ± 0.47

Daytime maximum TL (°C) 30.56 ± 3.6

Daytime TL skewness 0.84 ± 0.43

Daytime minimum ΔT (°C) −3.72 ± 1.36

Daytime mean ΔT (°C) 0.79 ± 0.40

Daytime maximum ΔT (°C) 11.27 ± 4.15

Daytime ΔT skewness 2.51 ± 1.32

Night‐time mean ΔT (°C) −0.13 ± 0.07

Note. n = number of leaves measured for each tree.

*p value from t tests comparing Alchornea and Miconia.
3 | RESULTS

3.1 | Validation of thermocouple data

TL based on ΔT measured with thermocouples and TA measured with

thermistors (TL = ΔT + TA) was highly correlated with TL as measured

by the IR thermometer (Pearson's correlation coefficient for each leaf

.60–.99, where TL was measured with IR thermometer on the abaxial

leaf surface). The slopes of linear regression lines forced through 0

were significantly different from 1 for only three leaves, where the

thermocouples slightly underestimated TL by up to 9% (Figure S5).

Overall, the close agreement between the two measurement methods

gives confidence in the thermocouple data.

3.2 | Microclimate during the monitoring period

Microclimate during the monitoring period is shown in Figure S6 and

for a single sunny day in Figure 2. The first 7 days (October 1 to Octo-

ber 7) were predominately overcast with low PAR, high h, and low D,

with some sunny periods on October 6 and October 7. Subsequently,

2 days (October 8 to October 9) had longer bright periods. The final

day of data collection (October 10) was again overcast. Throughout

the period, lower canopy levels received substantially less PAR and

experienced lower D. However, on sunny days, high PAR levels and

higher D extended throughout the vertical profile (e.g., October 8,

2016; Figure 2). Mean daytime TA at the top of the canopy was

15.0 °C, with a maximum TA of 22.1 °C recorded on October 8,

2016. Mean night‐time TA was 12.4 °C and was lowest preceding

sunny days. Mean wind speed above the canopy (at 25 m) was

1.0 ± 0.7 m/s and 0.26 ± 0.18 m/s within the canopy (averaged over

all sample heights 1.5, 6.5, and 11.5 m).

3.3 | Patterns of leaf temperature

Leaves occasionally reached much higher temperatures than the ambi-

ent air, over 10 °C above TA. The maximum TL for each leaf observed

over the monitoring period ranged from 22.5 to 37.2 °C and was

above 35 °C for five of the 23 leaves. Miconia leaves had significantly

higher maximum temperatures than Alchornea leaves (Table 1). Day-

time mean TL showed less variation than maximum TL between leaves
Miconia (n = 9) Guapira (n = 4) p*

8.51 ± 1.55 8.13 ± 0.59 .18

16.14 ± 0.72 14.6 ± 0.01 .6

34.63 ± 2.63 23.33 ± 1.22 .012

1.38 ± 0.27 0.56 ± 0.27 .005

−2.16 ± 0.75 −5.07 ± 2.50 .007

0.84 ± 0.43 0.007 ± 0.001 .8

14.23 ± 2.71 3.28 ± 1.08 .08

4.56 ± 1.63 0.73 ± 5.86 .009

−0.06 ± 0.03 −0.008 ± 0.01 .02
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and species (Table 1, Figure S7). Leaves of Guapira, which were all at

the bottom of the canopy, had lower maximum and mean TL (not

tested for significance due to low sample size). Distributions of TL

show positive skew (Figure S7), which was significantly higher for

leaves of Miconia than Alchornea (Table 1), showing that they reached

high temperatures more often than Alchornea. During daylight hours

ΔT was positive for leaves of Alchornea and Miconia and was close

to 0 for all Guapira leaves (Figure S8, Table 1). The maximum ΔT

observed was 18.3 °C, recorded from Miconia leaf M1. As for TL the

distributions of ΔT were positively skewed, with significantly higher

skewness for Miconia than Alchornea (Table 1). Minimum daytime ΔT

was significantly lower for Alchornea than Miconia leaves (Table 1).

Night‐time ΔT was typically negative but close to 0 and was signifi-

cantly lower for Alchornea than Miconia (Table 1).

TA set a rough minimum bound on TL (Figure 3), with many excur-

sions aboveTA due to high radiation (see Section 3.6) and a small num-

ber of excursions below TA, likely occurring when leaf surfaces were

wet during/after rain or in fog. TL excursions above TA occurred more

often for leaves positioned higher in the canopy.
3.4 | Leaf temperatures under specific microclimates

We compared leaf temperatures under specific microclimatic condi-

tions. Under low light and temperature conditions, leaves of Guapira

were significantly colder than those of Alchornea and Miconia

(Figure 4a); there was no significant difference in ΔT between the lat-

ter two species. Under medium light and temperature conditions,

there again was no significant difference in ΔT between Alchornea

and Miconia (Figure 4b); Guapira leaves did not experience these or

brighter light conditions due to their position in the understory. Under

high light and temperature conditions, ΔT was significantly higher for

Miconia than Alchornea (Figure 4c). Under the highest light conditions

analysed, ΔT was again higher for Miconia than Alchornea; however,

the difference was not quite significant (Figure 4d).
3.5 | Thermal trait variation between species

Stomatal conductance (gs) significantly declined with increasing D, and

the relation varied significantly between species (Figure 5, Table 2). At

low D, gs was highest for Miconia and lowest for Guapira. Miconia

showed a significantly stronger negative relationship between gs and
FIGURE 3 Leaf (TL) and air (TA) temperatures measured over 10 days f
leaves). Colour denotes leaf height. Grey line: y = x. Each data point is a s
series recorded every 10 s
D than Alchornea; hence, at higher values of D, Miconia leaves had

lower gs. Conditional R
2 for the overall mixed model including the ran-

dom factor for leaf was 0.49.

Structural leaf traits with importance for thermoregulation also

varied between species (Table S1, Figure 6). Miconia leaves were

significantly wider, larger, and had higher LMA than both Alchornea

and Guapira (Figure 6a–c). LDMC significantly differed between all

species and was highest for Miconia (0.42 ± 0.013 g/g) followed

by Alchornea (0.37 ± 0.016 g/g), and finally Guapira

(0.20 ± 0.022 g/g; analysis of variance, F = 38.8, p < .0001, and

Tukey post hoc test).

The thermal time constant (τ) ranged over two orders of magni-

tude from 9 to 350 s (Figure 7a) and varied significantly between spe-

cies (linear mixed effects model, F = 48.1, df = 20, p < .0001). τ for

Guapira were significantly longer and more varied (mean ± SD

155.4 ± 84.0) than both Alchornea (mean ± SD 276.5 ± 11.1) and

Miconia (mean ± SD 46.4 ± 14.4). τ decreased with increasing gs and

was particularly high under very low gs (Figure 7b). For a given gs, τ

increased in the order Alchornea <Miconia < Guapira (Figure 7b). These

differences were driven by the leaf structural traits LMA and LDMC

(Figure S9). When estimated using a fixed LMA value the differences

between Alchornea and Miconia are lost (Figure S9b) showing that

the higher LMA of Miconia increases τ. When estimated using a fixed

LDMC value the Guapira values collapse into line with Alchornea (the

two species have similar LMA; Figure S9c) showing that the lower

LDMC of Guapira increases τ.
3.6 | Leaf energy balance and drivers of ΔT and TL

Leaf‐to‐air temperature difference estimated from leaf energy balance

(ΔTe) using the spot measurements matched observed ΔTwell but with

some underestimation at higher ΔT (Figure 8), showing that our data

adequately parameterized the leaf energy balance for instances when

leaf surface PAR and gs were measured. To investigate the drivers of

ΔTwith the larger dataset of continuous ΔT and microclimate measure-

ments, the dataset was restricted to periods where predicted ΔTe
matched observed ΔT, as for the analysis of ΔT under specific microcli-

mate conditions. This is to ensure we are using appropriate values of

PAR, which was not measured at the leaf surface in the continuous

dataset. Both observed ΔT and ΔTe increase with PAR (Figure 9), a pat-

tern repeated whenTL and TLe (leaf temperature estimated from energy
or (a) Alchornea (10 leaves), (b) Miconia (10 leaves), and (c) Guapira (4
ingle measure of a single leaf taken from the thermocouple time
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FIGURE 5 Relationship between stomatal conductance and vapour
pressure deficit, and variation between species. Equations for each
species—Alchornea: gs = 325.1 (±22.4) − 68.8 (±22.6) D; Guapira:
gs = 185.4 (±36.4) − 212.7 (±22.6) D; Miconia: 401.6 (±31.0) − 189.8
(±35.4) D (errors are standard)

TABLE 2 Analysis of variance table for the linear mixed‐effects
model of D, species, and their interaction on gs. Leaf is included as
random intercept

Numerator
df

Denominator
df F p

Intercept 1 167 1097.0 <.0001

D 1 167 18.7 <.0001

Species 2 20 40.0 <.0001

D: Species interaction 2 167 6.6 .0018

FIGURE 4 I notice that I made an error in the box colour for the
legend of this figure and here attach a replacement with the correct
colouring.Leaf to air temperature difference (ΔI notice that I made an
error in the box colour for the legend of this figure and here attach a
replacement with the correct colouring.TI notice that I made an error in
the box colour for the legend of this figure and here attach a
replacement with the correct colouring.) variation between species
and microclimatic conditions. Vertical lines show the mean value for
the species. Significance values are shown testing for differences
between species (linear mixed‐effects model with leaf as a random
factor) under four different microclimates. PAR = photosynthetically
active radiation; TA = air temperature
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balance) were analysed (Figure S13). The slope of the relationship

between leaf temperature variables and PAR were different between

Miconia and Alchornea, where Miconia has higher ΔT and TL for a given

PAR (Figure 9 and S13). Although the absolute values of ΔTe and TLe

are somewhat higher than the observations, the differences between

the species are maintained in the energy balance estimations. Relation-

ships between ΔT and ΔTe and other microclimate variables (TA, D, and
U) were muchweaker than for PARwith all R2 values below 0.3 (Figures

S10–S12), whereasTL and TLe were strongly related toTA and Dwith R2

values above 0.7 (Figures S14–S16).

To determine what causes the differences between ΔT of

Miconia and Alchornea, we applied traits (leaf width and stomatal

conductance strategy) of Miconia sequentially to Alchornea and re‐

estimated ΔTe using the observed microclimate data. As shown in

Figure S17, applying the larger leaf width of Miconia acts to

increase the Alchornea ΔTe for a given PAR, almost to the extent

that it matches the high ΔTe of Miconia. If the higher intercept of

the gs–D relationship for Miconia is applied, the Alchornea ΔTe for

a given PAR decreases. In contrast, if the steeper gs–D slope for

Miconia is applied, the Alchornea ΔTe for a given PAR increases.

The effect is not as strong as the effect of leaf width (Figure

S17). Applying both the Miconia intercept and slope results in an

intermediate Alchornea ΔTe for a given PAR, slightly higher than

for Alchornea with its original parameterization. If all Miconia traits

are applied (leaf width and stomatal conductance strategy)

Alchornea ΔTe for a given PAR increases to a greater extent than

for any trait alone and even exceeds the ΔTe of Miconia. This is

likely due to the higher D that the highest six Alchornea leaves

are exposed to due to their position above the Miconia leaves

(Figure 1).
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4 | DISCUSSION

4.1 | Current leaf temperature patterns and the role
of microclimate

Despite the low TA (maximum 22 °C) occurring during the study

period, we observed leaf temperatures over 30 °C. Although few

datasets are available on field‐measured leaf temperatures of tropical

trees, the maximum ΔT we observed (18.3 °C) is somewhat higher

than those previously reported (e.g., 13.9 °C for a range of

Proteaceae species in Australia [Leigh, Sevanto, Close, & Nicotra,

2017], 10 °C for five species in Panama [Rey‐Sanchez et al., 2016]

and in the Amazon [Doughty & Goulden, 2008], 7 °C for three spe-

cies in tropical China [Dong, Prentice, Harrison, Song, & Zhang,

2017]). This could be due to high sampling frequency used in this

study (every 10 s) compared with others (every 2 min in Rey‐Sanchez

et al., 2016, half hourly in Dong et al., 2017 and unspecified in Leigh

et al., 2017) as at high frequency extreme values are more likely to

be recorded, though Doughty and Goulden (2008) used a 1‐s sam-

pling frequency. It could also be due to the light conditions and study

species measured (discussed below). The highest TL observed

(37.2 °C) is less than those reported by others under higher ambient

air temperatures (e.g., 45 °C—Doughty & Goulden, 2008; 48 °C—Slot

et al., 2016, Krause et al., 2010). This work supports the view that

ambient air temperatures cannot necessarily be used as a proxy for

leaf temperature in physiological models as they are not necessarily

equal (Michaletz et al., 2016; Rey‐Sanchez et al., 2016) and that veg-

etation models should be tested for their ability to reproduce pat-

terns of ΔT (Dong et al., 2017).

The distributions of TL and ΔT collected over the 10‐day period

were significantly skewed (Figures S7 and S8 and Table 2). This is
because under the predominant microclimatic conditions of rela-

tively low PAR and D, ΔT is low (<1 °C) and TL is similar to TA. How-

ever, due to fluctuating conditions—especially PAR, which alters

rapidly with cloud movements and wind and varies with sun angle,

leaf angle, and orientation—large increases in ΔT occur. The duration

of high ΔT excursions depends on how long the microclimate is

sustained. The extent of high ΔT excursions is important because

during high leaf temperatures beyond the photosynthetic tempera-

ture optima primary productivity will reduce carbon gain and very

high leaf temperatures can cause irreversible thermal damage (e.g.,

above 50–53 °C for a Panamanian tree species; Krause et al.,

2010). Our data suggest that, at least during our measurement

period, tree leaves at this Atlantic forest site are not approaching

thresholds of irreversible damage but do reach temperatures known

to affect thylakoid membrane structure (35 °C; Gounaris et al., 1983;

Gounaris et al., 1984) and reduce electron transport rates (40 °C;

Allakhverdiev et al., 2008) although critical temperatures of PSII

activity are known to vary among species (O'Sullivan et al., 2017;

Sastry & Barua, 2017). Although we do not know the photosynthetic

temperature optima of these trees, it is likely that the higher leaf

temperatures reached were supraoptimal for photosynthesis despite

the low air temperatures.

Within the range of conditions during the study period, radiation

was the most important microclimate variable for determining ΔT

(Figure 9, Figures S10–S12). This has also been shown in other stud-

ies (e.g., Doughty & Goulden, 2008; Rey‐Sanchez et al., 2016) and is

understood biophysically (Jones, 1992). For absoluteTL, PAR, TA, and

Dwere all important (Figures S13–S16), though the strength of the D

effect is likely due to at least in part to its covariation withTA. Recent

work has shown the occurrence of a crossover TA at 25–28 °C (Dong

et al., 2017; Michaletz et al., 2016). The crossover temperature is the
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TA at which ΔT = 0 and above which ΔT is negative. We found no evi-

dence of a crossover TA, likely due to the relatively low TA during our

study. The light levels observed in the study were high, occasionally

exceeding 3,000 μmol·m−2·s−1. We consider the light levels recorded

in the profile to be accurate as they were highly comparable with an

independent dataset from a weather station mounted at 27 m on the

same tower (Figure S18). The values are higher than the PAR

observed in similar studies from lowland forests with typical maxi-

mum PAR of 2,000 μmol·m−2·s−1 (Doughty & Goulden, 2008; Rey‐

Sanchez et al., 2016). Again, measurement frequency may be impor-

tant here for recording extreme instantaneous values. In fact, this

maximum quantity of PAR is equivalent to more radiation than the

solar constant (incoming light at the top of the atmosphere,

1.353 kW/m2), which is possible in mountains when light is reflected

from clouds (Stoutjesdijk & Barkman, 2014). Incoming radiation

increases by 8% for every 1,000‐m increase in elevation (Blumthaler,

Ambach, & Ellinger, 1997). Montane forests are therefore likely to

experience higher maximum radiation loads than lowland forest, as

has been measured at this site (Rosado, Joly, Burgess, Oliveira, &

Aidar, 2016). Given the importance of radiation for TL, trees at high
elevation may have greater risk of hitting damaging TL thresholds if

air temperatures increase with climate change. At this specific site,

in additional to increased radiation, D also increases with elevation

and trees show more conservative water use (Rosado et al., 2016),

which will further influence leaf temperatures. Mountaintop species

are already considered to be more greatly threatened than lowland

species by increased temperatures as there is no cooler place for spe-

cies to move to. The high radiation load increasing leaf temperatures

may exacerbate this problem.

As microclimate is a key driver of leaf temperature, it is important

to consider the vertical gradient in microclimate (Figure S6). We found

that all microclimate variables displayed vertical gradients, especially

during sunny days when the differences between the top and bottom

of the canopy exceeded 5 °C TA, 2,200‐μmol·m−2·s−1 PAR and 1.3‐kPa

D. The difference inTA leads to a larger difference inTL than the values

of ΔT we typically found (Table 1). Although vertical gradients of PAR

are often accounted for in vegetation models, often the gradients of

other key variables are not considered, which would lead to error in

quantification of leaf temperatures below the canopy top.
4.2 | Differences in leaf thermoregulation between
species

We found striking differences in leaf temperature patterns between

species that were attributable to differing leaf traits. Miconia leaves

more commonly experienced high ΔT excursions than Alchornea, with

higher skew in TL and ΔT distributions, higher maximum ΔT, and less

negative minimum ΔT (Table 1). Leaf temperatures of Miconia were

consistently higher than Alchornea when controlling for microclimate

between measurements and significantly so during high light condi-

tions (Figure 4). The differences increased with increasing thermal



FIGURE 9 (a, b) Relationships between PAR
and observed ΔT and (c, d) estimated ΔTe for
(a, c) Alchornea and (b, d) Miconia. Solid line—
modelled relationship for the plotted species.
Dash line—modelled relationship for the
alternative species. Statistical models are
linear mixed‐effects model with leaf as a
random factor. R2 is the marginal pseudo R2.
To account for uneven sampling with respect
to PAR data was subsampled for 1,000 points
in 250 μmol·m−2·s−1 bins for points below
1,000 μmol·m−2·s−1
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stress (higher PAR, TA, and D). The lack of significance at the highest

PAR/TA subset tested is likely due to low data availability and higher

PAR measurement errors at high PAR. As PAR was not measured

directly at the leaf surface, it was difficult to ensure correspondence

between PAR as measured by the nearest sensor and received at the

leaf surface; this is more problematic under direct light conditions

where leaf angle, orientation, sun angle, and within‐canopy shading

greatly impact leaf surface PAR. We recommend all studies of leaf

temperature attempt to measure PAR at the leaf surface despite the

higher efforts required.

The higher leaf temperatures displayed by Miconia can be

accounted for by lower transpirational cooling due to two reasons.

Firstly, the wider leaf width increases boundary layer resistance, which

lowers the evaporation from stomatal pores. Secondly, Miconia leaves

showed a strong negative relationship between gs and D, which lowers

transpiration under conditions of high thermal stress (as high D typically

occurs concurrently with high PAR and TA). Using the leaf energy bal-

ance equation, we find that the physical difference in leaf width is the

dominant factor in producing the variation in ΔT between Miconia and

Alchornea (Figure S17). Miconia leaves get hotter than Alchornea leaves

and, hence, may have a higher risk of thermal damage. However, this

increased heating may come with a water use advantage, as, under high

D conditions, transpiration rates per leaf area will be lower for Miconia

than Alchornea. This could reduce the risk of xylem cavitation under

water stress conditions. Differing thermoregulation strategies of trees

likely arise in combination with trade‐offs in terms of water use.

The study species only showed differing relationships between

PAR, and TL and ΔT, with similar responses to other microclimatic var-

iables (Figure 9, Figures S10–S16). This shows that it is the conse-

quences for input solar energy that varies between the species,
rather than differing mechanisms in response toTA. It is not to say that

other microclimatic variables are not important for TL or ΔT but that

the response of TL and ΔT to other variables is the same for the two

species, at least under the measurement conditions.

Night‐time ΔT were consistently negative for all species. How-

ever, ΔT of Alchornea leaves were more negative than the other spe-

cies (Table 1). The cause may be that many of the sampled Alchornea

leaves were at the outer canopy, and therefore, heat radiation to

space may be more effective for them due to the lack of obstacles

(other leaves or canopies), resulting in greater cooling. Another factor

may be that transpiration is maintained at night in this species more so

than Miconia and Guapira. Observations from Rosado et al. (2012) do

show night‐time transpiration occurring for Alchornea trees at this site,

but Alchornea did not show higher transpiration than other measured

species.

Leaf temperatures of the subcanopy Guapira tree were consis-

tently similar to air temperatures and showed little variation

(Table 1) likely due to the canopy position receiving very little light

(Figure 1). However, when the data were subsetted for low PAR con-

ditions only, leaves of Guapira still showed a lower ΔT than the two

other species (Figure 4a). This could be due to the narrower leaf width

of Guapira leaves (Figure 6), though the width is not significantly dif-

ferent from Alchornea. It could also be due to the unusual leaf angles

displayed by the Guapira leaves that were hanging near vertically

(Table S1, Figure 6e), which would limit the amount of light received

and result in over estimates of the light environment from using a hor-

izontally orientated sensor. Another potential contributor is the long τ

values estimated, as TL is expected to vary less when τ is long (Ball,

Cowan, & Farquhar, 1988). The long τ for Guapira leaves were a result

of the combined low gs and low LDMC (Figure 7, Figure S9); because
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water has a higher specific heat capacity than dry leaf matter, the

higher water content of Guapira leaves causes a longer τ (Vogel, 2009).
4.3 | Towards a better understanding of tropical leaf
temperature behaviour

The link between functional traits and leaf thermoregulation has been

highlighted in recent work (Michaletz et al., 2015, 2016). Here, we

provide field‐based evidence for this link in the most detailed study

of leaf energy balance in tropical montane forests to date and include

variation in water use as a key component. The traits that we find

important (leaf width, gs at high D, and LDMC) may possibly connect

other axes of plant functional variation (Reich, 2014)—the leaf eco-

nomics spectrum (Wright et al., 2004) and plant hydraulics. Species

that are able to maintain transpiration under high thermal stress con-

ditions (highTA, PAR, and D) will require water to supply the transpira-

tion stream from an efficient hydraulic system or from high water

capacitance to avoid hydraulic failure. Avoiding extremes of TL and

maintaining open stomata will then have the benefit of keeping TL

closer to the temperature optima of photosynthesis, maintaining a

CO2 supply, and all this while PAR is high to drive a high photosyn-

thetic rate (Ball et al., 1988). Conversely, lower transpiration under

high thermal stress conditions will prevent excessive water loss and

therefore avoid risk of hydraulic failure through xylem embolism but

increase risk of the leaf reaching a damaging high temperature thresh-

old. Critical thresholds of photosynthetic activity vary by species

(O'Sullivan et al., 2017). A recent study of critical thresholds of 41

co‐occurring tropical species found that variation was related to the

leaf economics spectrum (Wright et al., 2004), with high LMA species

showing higher temperature tolerance (Sastry & Barua, 2017). Miconia

has significantly higher LMA than Alchornea (Figure 6), and it would be

parsimonious if it also displays a higher critical temperature for dam-

age to photosynthetic machinery. In summary, we hypothesize that

trees at the slow end of the life‐history spectrum (Reich, 2014) are

likely to reach higher leaf temperatures, have lower gs and photosyn-

thesis under high thermal stress conditions, have lower risk of hydrau-

lic failure, and have a higher threshold for thermal damage, with the

converse true of fast species.

If we are to understand the implications of climate change for

tropical forests, it will be crucial to understand mechanisms of leaf

thermoregulation and how this varies between species. We have

based our findings on only a small, if detailed, dataset. There are very

few comparable datasets available for tropical forests. More datasets

exploring the full energy balance of tropical leaves from multiple sites

with varying climatologies, and ideally over extended time periods,

would certainly aid this. Beyond understanding current patterns of leaf

temperatures, it is also necessary to understand the response of

energy balance parameters to high TA and CO2. For example, herbar-

ium data for an Australian shrub species showed a reduction in leaf

width over the last century (Guerin, Wen, & Lowe, 2012), which could

mitigate increases in TL due to increased TA. Conversely, declines in gs

are a common response of tree species to increased CO2, which,

although potentially reducing water use, could lead to higher TL (e.g.,

Barker et al., 2005; Warren et al., 2011). However, the extent of

reductions in gs under elevated CO2 varies with species (Way et al.,
2015). In a study of seedlings of 10 tropical species, Cernusak et al.

(2011) found reductions in gs in all species in response to elevated

CO2, but the reductions were larger for species with high gs in ambient

conditions. Warming may also cause changes in gs; results from

warming experiments show a variety of responses—increases,

decreases, and no change (Way et al., 2015)—and a recent meta‐anal-

ysis found decreases in stomatal density with higher TA in trees but

not in herbs (Yan, Zhong, & Shangguan, 2017). If trees do indeed

decrease gs under higher growth temperatures, this could result in fur-

ther leaf warming beyond TA increases but only if transpiration

declines as well as gs, which is not certain given the expected rise in

D with increased TA. Our understanding of the effects of combined

CO2 and warming is even more limited. If both cause a decline in gs

separately, would the combined effect be additive leading to even

greater reductions? The limited experimental data do not paint a clear

picture (Way et al., 2015). A final question is whether leaves that reach

higher temperatures are better adapted to cope with high tempera-

tures and, therefore, increasing TL would be less consequential than

for low‐temperature species, or does the fact that leaf temperatures

are already high mean that high‐temperature species are more at risk?
5 | CONCLUSIONS

In this study, we made detailed measurements of leaf energy balance

for three tree species in the montane Atlantic forest, Brazil. Our

results show surprising high leaf‐to‐air temperature differences given

the relatively low air temperatures, which we attribute to the high

light conditions during the study. The higher radiation levels occur-

ring at high elevations may contribute to the risks of climate change

to tropical montane forests. We find differences in leaf thermoregu-

lation between leaves of Alchornea and Miconia, which is attributable

to lower transpiration under high thermal stress conditions for

Miconia due to its wider leaves and stronger reduction of gs with

increasing D. Leaf energy balance modelling can be a powerful tool

to understand variation between species in leaf thermoregulation,

which will be necessary to model the impact of climate change on

leaf physiology.
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