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Abstract High-resolution spectroscopy can be used to measure leaf chemical and structural traits. Such
leaf traits are often highly correlated to other traits, such as photosynthesis, through the leaf economics
spectrum. We measured VNIR (visible-near infrared) leaf reflectance (400–1,075 nm) of sunlit and shaded
leaves in ~150 dominant species across ten, 1 ha plots along a 3,300 m elevation gradient in Peru (on 4,284
individual leaves). We used partial least squares (PLS) regression to compare leaf reflectance to chemical
traits, such as nitrogen and phosphorus, structural traits, including leaf mass per area (LMA), branch wood
density and leaf venation, and “higher-level” traits such as leaf photosynthetic capacity, leaf water repellency,
and woody growth rates. Empirical models using leaf reflectance predicted leaf N and LMA (r2 > 30% and
%RMSE< 30%), weakly predicted leaf venation, photosynthesis, and branch density (r2 between 10 and 35%
and %RMSE between 10% and 65%), and did not predict leaf water repellency or woody growth rates
(r2<5%). Prediction of higher-level traits such as photosynthesis and branch density is likely due to these
traits correlations with LMA, a trait readily predicted with leaf spectroscopy.

1. Introduction

The distribution of traits within individual trees and between species may help indicate resilience of forests to
future climate change (Diaz & Cabido, 1997; Lavorel & Garnier, 2002; Westoby & Wright, 2006) and enable the
estimation of ecosystem fluxes (Enquist et al., 2015). Understanding these trait distributions on a regional scale
could therefore improve predictions of carbon cycling in tropical forests. Many leaf traits are associated with
and can be predicted by other leaf traits. The most famous example of this is the leaf economics spectrum,
which found that 82% of all variation in photosynthetic capacity (Amass), leaf mass per area (LMA), and
nitrogen content (Nmass) across species from a variety of global biomes, lay along the first principal axis in
three-trait space on a log-log scale (Wright et al., 2004). Other studies found that LMA could predict mass-
based assimilation and respiration rates and that leaf life span could predict many other traits (Poorter &
Bongers, 2006). Woody growth rates can also be predicted by traits. For example, seed mass, LMA, wood
density, and tree height have been predicted to be low for light-demanding species with rapid growth and
mortality and high for shade-tolerant species with slow growth and mortality (Wright et al., 2010). Low LMA
reflects the “live fast and die young” strategy because it expresses a trade-off within the leaf itself between
the energetic cost of leaf construction and the light captured per area (Diaz et al., 2016; Poorter et al., 2009).

Foliar chemical and morphological traits, such as nitrogen (N) concentration and LMA, can be estimated
remotely using high-resolution spectroscopy (either VNIR (400–1,100) or VSWIR (400–2,500 nm) spectral
properties) in combination with the partial least squares (PLS) regression technique (Richardson et al.,
2002; Serbin et al., 2014). Remote measurement of leaf chemistry and structure is possible because leaf
spectral reflectance signatures vary based on the concentrations of N, chlorophylls, carotenoids, lignin, cellu-
lose, leaf mass per unit area (LMA), soluble carbon (C), and water (Curran, 1989a, 1989b; Sims & Gamon, 2002;
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Smith, Kelly, et al., 2003; Smith, Martin, et al., 2003). For example, a leaf’s N concentrations are associated with
wavelengths absorbed by chlorophyll a and b in the visible part of the spectrum (400–700 nm), the spectral
red edge (700–760 nm), and proteins in the shortwave infrared (1,300–2,500 nm) (Gitelson & Merzlyak, 1997;
Kokaly, 2001; Smith, Martin, et al., 2003). In the shortwave infrared (SWIR; 700–1,300 nm), structures such as
palisade cell density are important controls on the spectral reflectance because of the very low effective
photon penetration distance at these wavelengths. LMA can now be accurately measured using
high-spectral-resolution sampling techniques at both the leaf (one nm bandwidth) (Curran, 1989a, 1989b;
Jacquemoud et al., 2009; Kokaly et al., 2009), canopy and landscape scales (at 10 nm bandwidth) (Asner et al.,
2016, 2015). Even chemicals not directly expressed in the spectrum, such as phosphorus (P), base cations
(calcium (Ca), potassium (K), and magnesium (Mg)) and other micronutrients, show relationships with the
spectrum, possibly through a stoichiometric relationships with other chemicals (Ustin et al., 2004, 2006).

Another goal of imaging spectroscopy is to quantify photosynthetic capacity and woody growth capacity of
forests, since woody growth and carbon sequestration can impact global climate by modifying atmospheric
CO2 concentrations. The relationship between leaf properties such as LMA and woody growth rates could
enable the prediction of mean woody growth rates via a leaf’s spectral signature (Poorter et al., 2009). Year
to year variation in growth rates is dominated by environmental variation, but long-term growth strategies
are possibly associated with leaf traits (Diaz et al., 2016, Wright et al., 2004). Therefore, leaf traits associated
with growth strategies could allow spectroscopy to predict these growth trends. Previous work has shown
that leaf spectral properties can predict traits or attributes beyond leaf chemistry or structure. For instance,
leaf age has been predicted with high-resolution leaf spectroscopy (400–2,500 nm) and leaf age is not directly
expressed in a leaf’s spectral signature (Chavana-Bryant et al., 2017). Previous work has also shown that other
leaf properties such as photosynthetic capacity that may not directly influence leaf spectral signatures can
also be predicted with spectroscopy (Doughty et al., 2011).

Spectroscopy may also provide a useful field estimate of many difficult-to-measure plant traits associated
with a leaf’s carbon uptake and hydraulic strategies indirectly through correlations. In principle, spectroscopy
could potentially be used to quickly estimate leaf vein density (VD), which is often correlated to photosyn-
thetic capacity and conductance (Brodribb et al., 2007). Likewise, spectroscopy could potentially predict
structural traits related to hydrophobic leaf waxes interacting with a water droplet (a data set we use in this
paper called leaf water repellency and more fully described in Goldsmith et al., 2016). Such traits currently
require difficult or time-consuming laboratory analyses to measure. Can we instead use leaf spectral proper-
ties to rapidly estimate such leaf traits in the field or use remote sensing of the spectral properties to better
predict carbon and hydraulic strategies?

In this study, we ask whether leaf spectroscopy can predict forest functional traits and higher-level properties
by focusing on a 3,300m elevation gradient in Peru with some of the highest levels of species, trait, and envir-
onmental diversity in the world. A previous study on a nearby elevation gradient demonstrated how sunlit
leaf spectral patterns change with elevation and used leaf spectral properties to accurately predict 21 leaf
chemical and physical traits (Asner, Martin, et al., 2014). It also found interspecific variation in spectral and
chemical traits dominated over intraspecific variation among sun leaves of canopy trees. However, that
study did not address shaded foliage, which constitutes the majority of canopy leaves, nor traits not
directly associated with foliar chemical properties. Without shade leaf spectral data it is unknown how whole
canopy spectra will vary since shaded leaf spectra have a strong influence on total canopy reflectance in the
NIR wavelengths. For this paper, our main question of interest is the following:

Can VNIR reflectance of sun and shade leaves predict tree traits and higher-level properties such as woody
growth along a tropical forest elevation gradient?

We also ask the following specific questions:

1. Do shade leaves show equally high levels of interspecific variation in leaf reflectance to sun leaves?
2. Can VNIR spectral properties (400–1,075 nm) predict leaf chemical and structural traits as well as full

VSWIR spectral properties (400–2,500 nm)? Can underside spectral signature predict traits as well as the
top-of-leaf?

3. Is there a relationship between leaf spectral properties and nonfoliar traits such as photosynthesis, woody
NPP, and wood density? What are the structural and chemical drivers of these relationships?
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2. Materials and Methods
2.1. Field Sites

Thesemeasurements were made as part of the CHAMBASA (CHallenging Attempt to Measure Biotic Attributes
along the Slopes of the Andes) campaign from April to November 2013 along an elevation gradient (from
3,500 m to 220 m elevation) in the Peruvian Amazon (Table S1 in the supporting information). The plots are
part of a long-term research effort coordinated by the Andes Biodiversity Ecosystems Research Group
(ABERG, http://www.andesconservation.org) and are part of the ForestPlots (https://www.forestplots.net/)
and Global Ecosystems Monitoring Network (http://gem.tropicalforests.ox.ac.uk/projects/aberg). Plots were
established between 2003 and 2013 in areas with minimal evidence of human disturbance. Within each plot,
all stems ≥10 cm diameter at breast height are tagged and identified to species level. There is a negative linear
relationship in the gradient between mean annual temperature and elevation with a mean annual tempera-
ture of 24.4°C in the warmest lowland Amazonian site and 9.0°C at the Amazonian treeline in the Andes.
Mean annual precipitation varies from 1,560 to 5,302 mm yr�1 along the elevation gradient. Soils at elevations
>600 m are composed of relatively high-fertility Inceptisols and Entisols. In the lowlands (<600 m above sea
level), soils vary among Ultisols on low-fertility terra firme clay substrates and Inceptisols on inactive
high-fertility floodplains. We describe characteristics of the plots in Table S1. All data in this paper can be found
in a data repository with the following DOI: https://ora.ox.ac.uk/objects/uuid:4101e249-3cf5-443f-9c29-
9204604c667b.

2.2. Leaf Collections Sampling Strategy

In each 1 ha plot (N = 10 plots), we sampled the most abundant species as determined through basal area
weighting (enough species generally to cover 80% of the plot’s basal area, although in the diverse lowland
plots only 60–70% of plot basal area were sampled). For each species, we sampled the five (three in the low-
lands) largest trees (based on diameter at breast height (DBH)) and tree climbers with extended tree pruners
removed one branch grown in sun and one grown in shade conditions. These branches were quickly recut
underwater to restore hydraulic conductivity. On each of these branches, we choose five random leaves.
These five leaves were each sampled for photosynthesis, leaf spectral properties (generally measured within
1 h of being cut), and Leaf Mass Area (LMA—leaves scanned for area immediately after collection using a
digital 476 scanner (Canon LiDE 110) and oven-dried at 72°C until constant weight reached) and leaf water
repellency (see below for methods) later that day. On three of the five leaves, we later measured leaf
chemistry (% N, C, and P). Total phosphorus content was determined using persulfate oxidation followed
by the acid molybdate technique, and phosphorus concentration was then measured colorimetrically with
a spectrophotometer (Thermo Scientific Genesys20, USA). Carbon and nitrogen content were measured on
a continuous-flow gas-ratio mass spectrometer (Finnigan Delta PlusXL) coupled to an elemental analyzer
(Costech). On approximately one leaf per branch, we measured leaf venation. The rest of the leaves from
the branch were used for a bulk chemical analysis following the protocol outlined below.

2.3. Leaf Photosynthesis

We used a portable gas exchange system (LI 6400, Li-Cor Biosciences, Lincoln, NE, USA) to measure light-
saturated leaf photosynthesis (Asat; 1,200 μmol m�2 s�1 PPFD, 400 ppm CO2, at the MAT of the plot) and
maximum photosynthesis (Amax; 1,200 μmol m�2 s�1 PPFD, 1,000 ppm CO2, at the MAT of the plot).
Photosynthetic capacity in most tropical leaves saturate above light levels of 1,200�μmol m�2 s�1 PPFD
(Doughty & Goulden, 2008). Most physiological measurements were collected between 07:00 and 14:00 local
time, and branches were cut from tree between 06:00 and 13:00 local time.

2.4. Vein Density

We prepared a slide of each leaf’s venation network by chemically clearing and staining pressed dried leaf
material (Pérez-Harguindeguy et al., 2013). We then photographed the leaf using an Olympus SZX-12 micro-
scope setup for trans-illumination. We then traced all veins within a polygonal region of interest of each
image (mean area 36 ± 23 s.d. mm2). We calculated vein density (VD) in MATLAB by dividing the total length
of the skeletonized traced veins by the total area of the region of interest, then correcting for any shrinkage of
the leaf imposed by drying. For further information see the Methods of Blonder et al. (2017) and Figure 1.
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2.5. Leaf Water Repellency

Each leaf was first secured flat to a horizontal surface. A 5 μl droplet of water was then placed on the adaxial
side of the leaf using a micropipette, and a photograph was taken of the horizontal profile of the droplet
using a digital camera. We removed epiphylls by hand or using a tissue when necessary. We measured the
contact angle (θ) as the angle between the line tangent at the edge of the water droplet and the horizontal
line of contact of the water droplet on the leaf surface (Figure 1). Higher leaf water repellency has a larger
contact angle (Rosado & Holder, 2013). We outlined the water droplet as an ellipse to help more accurately

Figure 1. Vein density is highly variable between species. Example venation networks are shown for (a) Cavendishia bracteata (Ericaceae), 6.8 mm�1; (b) Clethra
cuneata (Clethraceae), 14.3 mm�1; (c) Pourouma bicolor (Urticaceae), 24.9 mm�1. (d) Leaf water repellency is measured as the contact angle of a droplet of
water on a leaf surface and (e) samples of different measured angles (repeated from Goldsmith et al., 2016).

Table 1
Mean, Standard Deviation (SD), and Mean Coefficient of Variation (CV) for All Spectra Measured in the 10 Plots in the Visible (VIS, 400–700 nm) and the Near Infrared (NIR,
800–1,075 nm) for Both Sun Leaves and Shade Leaves, Respectively

Sun VIS Sun NIR Shade VIS Shade NIR

Plot
Elevation

(m)
Mean

reflectance SD CV
Mean

reflectance SD CV
Mean

reflectance SD CV
Mean

reflectance SD CV

Acjanaco 1 3,537 0.052 0.013 0.252 0.501 0.062 0.124 0.046 0.011 0.240 0.503 0.038 0.077
Wayqecha 3,045 0.050 0.012 0.238 0.523 0.056 0.107 0.040 0.004 0.105 0.534 0.114 0.213
Esperanza 2,868 0.052 0.010 0.193 0.524 0.042 0.081 0.050 0.010 0.206 0.506 0.046 0.092
Trocha Union 4 2,719 0.052 0.012 0.233 0.511 0.058 0.114 0.049 0.010 0.211 0.515 0.052 0.101
San Pedro 1 1,713 0.051 0.012 0.233 0.510 0.070 0.138 0.050 0.011 0.221 0.511 0.061 0.119
San Pedro 2 1,494 0.047 0.009 0.202 0.511 0.055 0.109 0.046 0.009 0.190 0.511 0.050 0.099
Pantiacolla 3 859 0.046 0.011 0.237 0.513 0.038 0.075 0.043 0.009 0.203 0.509 0.039 0.077
Pantiacolla 2 595 0.045 0.009 0.201 0.515 0.040 0.078 0.043 0.008 0.179 0.512 0.032 0.062
Tambopata 5 223 0.050 0.012 0.251 0.503 0.032 0.064 0.046 0.009 0.196 0.496 0.030 0.061
Tambopata 6 215 0.052 0.014 0.280 0.527 0.048 0.091 0.049 0.010 0.214 0.511 0.044 0.087
Mean 0.050 0.011 0.232 0.514 0.050 0.098 0.046 0.009 0.197 0.511 0.051 0.099

Journal of Geophysical Research: Biogeosciences 10.1002/2017JG003883

DOUGHTY ET AL. AMAZONIAN LEAF SPECTROSCOPY AND TRAITS 2955



identifying the tangent prior to determining contact angle. Analysis was conducted in ImageJ v1.47 (U. S. National
Institutes of Health, Bethesda, Maryland). For further details see Goldsmith et al. (2016) and Figure 1.

2.6. Bulk Leaf Chemistry

Leaves from branches not selected for photosynthesis measurements were used for a bulk chemical analysis
with methodology detailed in Asner, Anderson, et al. (2014) and in documents available on the Carnegie
Spectranomics website (http://spectranomics.ciw.edu) (Table S2). Foliage was dried and ground in a 20 mesh
Wiley mill, and concentrations of Phosphorus (P), Calcium (Ca), Potassium (K), Magnesium (Mg), Boron (B),
Iron (Fe), Manganese (Mn), and Zinc (Zn) were measured using coupled plasma spectroscopy (ICP-OES;
Therma Jarrel-Ash,Waltham, MA, USA) after microwave digestion (MARSXpress; CEM, Matthews, NC, USA).

Figure 2. This figure illustrates the mean reflectance properties per research plot (along an elevation gradient). Leaf reflectance (top), standard deviation of this
reflectance (middle), and coefficient of variation (plot SD divided by the plot mean) (bottom) for sunlit (left) and shaded (right) leaves. Inset figures are the
differences between the sun and shade leaves for reflectance (top), standard deviation (middle), and coefficient of variation (bottom).
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We determined carbon fractions of cellulose, lignin, hemicellulose, and
soluble C (composed of amino acids, pectins, simple sugars, starch, and
waxes) in 0.5 g of dry ground leaf tissue with sequential digestion in a
fiber analyzer (Ankom Technology, Macedon, NY, USA). These results
are shown in Table S2.

2.7. Woody NPP and Branch Wood Density

All trees >10 cm DBH at the 10 plots have had periodic census mea-
surements of their DBH. We used the change in DBH during the longest
available interval (ranging between 1 and 30 years) to estimate the
mean growth rate of that tree. We divided this growth rate by the tree’s
DBH to estimate a yearly percentage growth rate. For branch wood
density, we measured six branch sections per tree (approximately
1 cm in diameter and 5 cm in length). Bark was removed from three
of the samples. They were weighed wet, and volume measured by
immersing in water and converting weight to volume. The branches
were then dried in an oven to a constant weight and reweighed. For
further details see Malhi et al. (2017).

2.8. Leaf Spectroscopy

We measured hemispherical reflectance near the midpoint between
the main vein (avoiding large primary or secondary veins) and the leaf edge on the top and bottom
(Figure S1) surface of five randomly selected leaves within an hour of each branch being cut. We collected
the spectra with an ASD Fieldspec Handheld 2 with a fiber optic cable, contact probe which has its own cali-
brated light source and a leaf clip (Analytical Spectral Devices High Intensity Contact Probe and Leaf Clip,
Boulder, Colorado, USA). The spectrometer records 750 bands spanning the 325–1,075 nm wavelength
region. Measurements were collected with 136 ms integration time per spectrum. To ensure measurement
quality, the spectrometer was optimized after every branch, spectra for every leaf were calibrated for dark
current, stray light and white referenced to a calibration panel (Spectralon, Lasphere, Durham, New
Hampshire, USA). In each measurement spot (on each side of the leaf) 25 spectra were internally averaged
to increase the signal-to-noise ratio of the data.

2.9. Data Processing

We calculated coefficient of variation (CV) of our spectral data as the standard deviation divided by the mean.
To predict leaf traits with the spectral information, we used the Partial Least Squares Regression (PLSR)
modeling approach (Geladi & Kowalski, 1986; Wold et al., 2001). This approach incorporates the full spectral
information within each leaf reflectance measurement versus a single band analysis (Kokaly et al., 2009), thus
reducing our large predictor matrix (675 spectral bands—400–1,075 nm) down to a relatively few, uncorre-
lated latent factors. This approach has been previously demonstrated to yield accurate and consistent results
for predicting plant traits within and across vegetation types and ecosystems (Asner & Martin, 2008;
Richardson et al., 2002 ; Serbin et al., 2014). To establish predictive models for chemical, structural and
higher-level leaf traits, we used the PLSregress command in Matlab (Matlab, MathWorks Inc., Natick, MA,
USA). We avoided overfitting the number of latent factors we used for each analysis by minimizing the mean
square error with cross validation (on 70% of the data, and then tested the model on an independent 30% of
the data). This process removes one sample from the input data set until we minimize the mean square error.
For each trait model, we selected the number of latent vectors by choosing the number that minimized the
root-mean-square error (RMSE). To compute the mean square error of prediction, we use K-fold cross
validation. To create a completely independent testing data set, we use 70% of our data to calibrate our
model and then the remaining 30% to test the accuracy of our model. We evaluated the accuracy of our
modeled estimates using two main metrics: r2 and root-mean-square error (RMSE).

3. Results

Mean visible (400–700 nm) leaf reflectance for all the plots was 0.050 for sun leaves and 0.046 for shade
leaves, with greater visible CV in the sun leaves (0.232 versus 0.197). In the NIR (800–1,075 nm), mean leaf

Figure 3. Leaf reflectance interspecific (difference between mean tree spectra)
coefficient of variation (dashed lines) (SD/mean) and intraspecific (difference
between leaves on the same tree) variation (solid lines) for sunlit (black lines) and
shaded (grey lines) leaves.
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reflectance was 0.514 for sun leaves and 0.511 for shade leaves, with similar CV (0.098 versus 0.099) (Table 1
and Figures 2 and 3). There were no differences with elevation when we subtracted sun from shade leaves
(Figure 2 insets). Overall significant differences between sun and shade leaves are shown in Figure S1.
There were no significant (P > 0.05) linear trends in reflectance or CV with elevation (Table 1) in either the
visible or the NIR. CV between leaves of the same species (intraspecific variation) was less than CV
between species (interspecific variation) in sun leaves (0.25 versus 0.10 maximum CV in the visible) and
shade leaves (0.20 versus 0.08 maximum CV in the visible). Interspecific variation peaked in the visible
wavelengths (25% CV for sun and 21% CV for shade leaves) (Figure 3).

We then used the PLS regression technique to compare individual leaf spectral characteristics to leaf chemical
values for LMA, %N, and %P (Figure 4 and Table 2) measured on the same leaves (results for the PLSR for bulk
chemistry are shown in Table S2). The predictions of the empirical models generally matched the measured
estimates with high accuracy and precision. The primary principal component weighting demonstrates which
regions of the spectra are most important for the empirical model (as measured by deviation away from zero)
(Figure 4). LMA had the strongest predicted relationship with an r2 of 0.76 and a RMSE/mean of 0.27 (Table 2),

Figure 4. Predicted versus measured values using PLS regressions (left column) and primary principle component for LMA
(g m�2), % nitrogen, and % phosphorus (right column).
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indicating that leaf spectral characteristics can accurately predict LMA, a finding supported by several other
studies (Jacquemoud et al., 2009; Kokaly et al., 2009). As expected, the weightings indicate that the spectral
region most important for predicting LMA is in the NIR region. Leaf spectral properties also predicted %N
accurately (r2 = 0.64) and with precision (RMSE/mean = 0.23). The most important spectral regions for %N
are in the visible, but especially the red edge, with less spectral importance in the NIR. %P was predicted
with an r2 of 0.35, a RMSE/mean of 0.47 and most spectral information in the visible and the red edge regions.

Next, we used leaf reflectance to predict more complex traits (Figure 5). We generally found poorer relation-
ships between these traits than for less complex traits such as leaf chemistry or LMA. Leaf spectra predicted
Amax (light and CO2 saturated photosynthesis) with an r2 of 0.17 and a RMSE/mean of 0.62. The primary prin-
cipal component for both Asat (light saturated) and Amax (light and CO2 saturated) photosynthesis had peaks in
the NIR and the red edge. This is not surprising as%N and LMA have been shown to be related to Amax through
the leaf economics spectrum (Wright et al., 2004). Asat demonstrated a similar fit with the spectra as Amax, with
an r2 of 0.15 and a RMSE/mean of 0.57. Leaf spectra showed a reasonably strong relationship with leaf minor
vein density (r2 of 0.47 and a %RMSE of 0.26 for sun leaves) and leaf vein surface area (r2 of 0.43 and a %RMSE
of 0.59 for sun leaves). The important spectral regions for predicting leaf vein density have peaks in the red
edge and in the NIR. Leaf water repellency was not predicted using the spectra possibly because it did not vary
much across the elevation gradient, nor did it vary consistently with taxa and there was much unexplained
variance (Goldsmith et al., 2016). Results for the PLSR for both sun and shade leaves are detailed in Table 2.

Finally, we measured whether leaf spectra could be used to predict broader forest characteristics that might
be correlated with leaf traits such as branch wood density and mean tree growth rate because long-term
growth strategies are possibly associated with leaf traits (Diaz et al., 2016; Wright et al., 2004) (Figure 6). All
trees in each plot >10 cm DBH have measured woody NPP using periodic census measurements, and we
compare individual tree growth to average leaf reflectance for that tree. We show empirical relationships
for sunlit leaves in Figure 6 and for shade leaves in Table 2. Branch wood density demonstrated a strong rela-
tionship with the spectra (r2 of 0.41 and 0.66 and a % RMSE of 0.08 and 0.10 sun/shade). However, woody
growth showed no relationship with the spectral signature (r2 of 0.04 and 0.01 and a % RMSE of 1.37 and
1.43 sun/shade). The important spectral regions for predicting branch wood density are mainly in the NIR,
which is similar to leaf structural traits such as LMA.

To further investigate why there may be relationships between leaf spectra and nonfoliar properties, we then
compared mean tree sunlit LMA to branch wood density and mean tree growth rate and found strong
significant relationships (P < 0.005, but with low variance explained—r2 = 0.03) between LMA and branch
wood density but not mean tree growth rate (Figure 7). This result is similar to the PLS regressions showing
predictions of branch wood density using spectra but not mean tree growth rate. The ability of leaf spectral
properties to predict branch wood density is likely due to the correlation of these properties to LMA since

Table 2
Results of the PLS Regressions for Comparisons of Leaf Level Spectral Properties Versus the Same Leaf Values of LMA, %N, %P, Asat, and Amax

Sun leaves Shade leaves

Mean N RMSE %RMSE r2 cal r2 test Mean N RMSE %RMSE r2 cal r2 test

LMA (g m�2) 109±44 2601 33.09 0.27 0.76 0.52 136±57 1683 41.90 0.34 0.71 0.55
LMA-abaxial (g m�2) 109±44 2601 44.85 0.36 0.74 0.56 136±57 1683 32.26 0.26 0.78 0.54
%N 2.35±0.61 2182 0.53 0.23 0.64 0.32 2.31±0.60 1297 0.52 0.22 0.41 0.28
%P 0.12±0.06 2485 0.05 0.47 0.35 0.13 0.12±0.06 1606 0.06 0.50 0.28 0.06
Asat μmol m�2 s�1 6.6±3.0 2601 2.86 0.62 0.17 0.08 5.1±3.6 1683 3.23 0.70 0.24 0.14
Amax μmol m�2 s�1 10.5±5.1 2601 5.60 0.57 0.14 0.10 8.6±6.2 1683 5.63 0.57 0.18 0.11
Leaf water repellency (deg) 63.4±9.6 331 8.83 0.14 0.07 0.02 64.9±9.1 205 9.11 0.14 0.02 0.01
Vein density—mm�1 14.0±4.7 253 3.76 0.26 0.47 0.32
Vein area 34.7±25 253 19.99 0.59 0.43 0.25
Branch wood density—(g cm�3) 0.76±0.09 536 0.061 0.078 0.41 0.17 0.75±0.1 371 0.078 0.10 0.66 0.32
Woody growth—(fraction of DBH) 0.02 523 0.03 1.37 0.04 0.01 0.02 523 0.03 1.43 0.01 0.01

Note. We then comparedmean branch spectral properties tomean branch or tree values of leaf water repellency, vein density, vein area, branch wood density, and
woody growth. The results are presented as mean value (±sd), number of samples (N), RMSE, % RMSE (RMSE/mean), r2 calibration and r2 test for both sun and
shade leaves. The statistics below average 10 separate PLS regression simulations (each independent run varies because the 70% calibration data are randomly
selected).
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Figure 5. (left) Predicted versus measured values using PLS regressions and (right) primary principle component for
(a) Asat (light saturated), (b) Amax (light and CO2 saturated) photosynthesis, (c) leaf vein area mm�1 and (d) leaf vein
density mm�1 for sun leaves.
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wood density has been weakly (i.e., r2 = 0.13 in Wright et al., 2010) correlated with LMA (Diaz et al., 2016;
Wright et al., 2010).

4. Discussion

Many previous papers have shown that VNIR reflectance of sun leaves can predict leaf chemistry and structure
such as LMA (Curran, 1989a, 1989b; Sims & Gamon, 2002; Smith, Kelly, et al., 2003; Smith, Martin, et al., 2003).

However, here we show for the first time that VNIR reflectance of tropical
sun and shade leaves can also predict other traits such as leaf venation,
photosynthesis, and branch density (explaining between ~10–35% of
the variance—Table 2 and SOM) but cannot predict other parameters
such as woody growth rates or leaf water repellency. These parameters
are not directly estimated from the leaf spectral signature but instead
are (weakly) correlated with other leaf chemical and physical traits such
as LMA and leaf N (Diaz et al., 2016; Wright et al., 2004) that are directly
predicted from leaf spectral properties (Jacquemoud et al., 2009; Kokaly
et al., 2009).

Leaf spectroscopy could predict several forest properties not directly
expressed in the leaf spectra, such as branch wood density (Figure 6
and Table 2). The PLS weightings of branch wood density are very simi-
lar to LMAwith most of the signal in the NIR wavelengths. This indicates
that the prediction of these parameters (correlation coefficients in
Table 2) may actually rest with an accurate prediction of LMA. In other
words, Figure 4 demonstrates that leaf spectral properties can strongly
predict LMA and Figure 7 shows that branch wood density and LMA are

Figure 6. (left) Predicted versus measured PLS regressions for tree averaged leaf spectra versus branch wood density (top)
and woody NPP (bottom) for sunlit leaves and (right) the primary principle component weightings for each variable.

Figure 7. Mean tree averaged sunlit LMA versus (top) branch wood density
(g cm�3) and (bottom) mean monthly tree growth rate (yr-1).
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correlated, which is why there is any predictability of nonfoliar properties by leaf spectral properties. Our pre-
diction of branch wood density using spectroscopy was sufficient to potentially differentiate between large,
heavy wood density trees with thick long-lived leaves and smaller, light wood density trees with thin short-
lived leaves. This interpretation is reinforced by the significant relationships between LMA and branch wood
density (Figure 7). This finding suggests that optical remote sensing could help estimate woody biomass
because wood density estimates are key for such estimates. Another example is our empirical models predict-
ing vein density. They do not directly measure veins but rather a cross-sectional area of solute and water rela-
tive to mesophyll chemistry that is associated with veins or the fraction of the leaf’s volume/biomass that is
lignified. Overall, predictions of leaf veins, photosynthesis, and wood density had lower (Table 2) yet still rea-
sonable precision and accuracy comparable to such compounds as tannins, hemicellulose, K, B, Fe, Mn, and
Zn (Table S2).

We did not find a relationship between leaf spectral reflectance and mean woody growth rate for a given
tree. We had initially hypothesized that there may have been a correlation based on the relationship between
LMA and light-demanding pioneer species with rapid growth andmortality (Wright et al., 2010). However, our
study was in old growth closed canopy forests, which may have impacted our results. Outside of pioneer
species, woody growth rates can be difficult to predict because they are a function of photosynthesis, carbon
use efficiency, and the differential allocation of NPP to woody biomass (Doughty et al., 2015, 2014; Malhi et al.,
2011, 2015). Such woody NPP growth rates have proven very difficult to accurately estimate even with
complicated vegetation models (Cleveland et al., 2015).

Field-based leaf spectroscopy could potentially serve as a replacement for time consuming, lab measure-
ments of traits. For instance, estimation of leaf traits is a time-consuming process that involves manually
tracing leaf veins. The RMSE/mean for leaf vein density is <30% with an r2 of ~50% which can broadly
distinguish between low and high values of these traits. This would likely provide a meaningful, though
not highly precise, rough field estimate of vein density. As with forest properties such as branch wood
density, this may be due to correlations between vein density and the leaf’s volume/biomass that is lignified.
Thus, the promise of remote sensing for these time-intensive traits may soon be realized.

In this study, empirical models predicting leaf chemical, structural, and photosynthetic parameters were
strong overall but less accurate (based on mean r2) and less precise (based on %RMSE) than those measured
in previous studies (Asner & Martin, 2008; Asner et al., 2009; Doughty et al., 2011; Richardson & Reeves, 2005;
Serbin et al., 2014). On average, there is a reduction in r2 of ~0.2–0.3 and a reduction of %RMSE of 20–30%
compared with previous studies (specifically comparing Table S2 to Table 2 in Asner, Martin, et al., 2014).
For instance, we did find a relationship between Asat and leaf spectral properties but much weaker
(r2 = 0.14–0.24 versus r2 = 0.74) than previously observed (Doughty et al., 2011). In both studies, Amax was less
accurate and precise than Asat. There are several potential reasons for this. First of all, we used spectral bands
between 400 and 1,075 nm (VNIR) while previously studies used 400–2,500 nm (VSWIR) (Asner, Martin, et al.,
2014). Many chemicals, such as N, are strongly expressed in the near-infrared and SWIR portion of the reflec-
tance spectrum (Kokaly, 2001; Smith, Martin, et al., 2003), a spectral region missing in our study. However, this
does not completely explain the difference because a previous study made predictions using less spectral
data (400–1,100 nm) and found that predictions of photosynthesis were still strong, with mean RMSE declin-
ing by only 10% (from 3.2 to 2.9 when spectral data were reduced from 400–2,500 to 400–1,100 nm)
(Doughty et al., 2011). Interestingly, the part of the leaf measured (whether top or bottom of the leaf) does
not strongly affect our ability to predict LMA from leaf reflectance spectra (Figure S2).

This study was also unique because we measured shade leaf reflectance along with traits, while few previous
studies had measured shade tropical leaf reflectance. Ideally, we could scale our leaf level predictions of
higher-level traits to the canopy level with drone, aircraft, or even satellite hyperspectral data. However, to
do so, it is important to understand the spectral properties of shade leaves as well since these will be
expressed in the NIR of canopy measurements. Our results show equally strong relationships predicting
shade leaf traits as they do for predicting sun leaf traits (Table 2).

In addition, our shade leaf data set was also able to resolve another mystery. Interspecific (between species)
spectral variability in our data set was higher than in other ecosystems ( Asner et al., 2000; Castro-Esau et al.,
2004; Roberts et al., 1998). Interspecific variation in leaf reflectance peaked in the visible at ~25% (expressed
as coefficients of variation CVs) (Figure 2 and Table 2). These high levels of interspecific variation match a
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previous campaign, which measured 1,449 canopy tree species and found a maximum CV of 23% in sunlit
leaf reflectance (Asner, Martin, et al., 2014). Previous studies hypothesized that interspecific variation was
large because they just focused on canopy exposed sun leaves. However, our data show that shaded leaf
interspecific variation was still very high but slightly lower than for sunlit leaves, with a mean visible CV of
~21%. Asner, Martin, et al. (2014) hypothesized that interspecific variation in western Amazonian forests
dominates over intraspecific variation in this region because the upper canopy foliage is much drier and less
susceptible to epiphylls (they estimated epiphylls are present in 9% of the cases in sufficient quantities to
affect reflectance), herbivory, and other factors that may increase intraspecific variation in leaf spectral
signatures (Asner, Martin, et al., 2014; Vourlitis et al., 2008). However, we show that shade leaves, which are
generally more susceptible to epiphylls, also have high levels of interspecific variation compared to intraspe-
cific variation (~0.03 CV lower than the sun leaves). This indicates that phylogenetic expression in the spectra
occurs at the whole canopy-volume scale, a finding reflected in recent work on sunlit versus shade leaves and
the chemistry of 21 different compounds. This increases the likelihood that our method could successfully
scale to the canopy level.

The western Amazon may have uniquely high levels of interspecific spectral variability. This high spectral
diversity may be an intrinsic function of high biological diversity in tropical forests and due to the evolution
of high chemical defense levels in response to host-specific pest and pathogen pressure (Asner, Martin, et al.,
2014). These high levels of spectral diversity may enable us to use remote sensing to estimate 10–35% of the
variation in important forest properties such as photosynthesis and wood density. This accuracy and preci-
sion may only allow a binary type detection process distinguishing between low and high values.
However, we hypothesize that accuracy and precision will only improve when using the VSWIR instead of just
the VNIR and when scaled to the canopy level, as canopy spectroscopy may amplify the leaf-level chemical
and physiological signals via the process of effective photon penetration depth (EPPD; (Asner, 2008). Next
steps are to test predictions of higher-level traits with high-resolution aircraft systems, such as the
Carnegie Airborne Observatory (Asner et al., 2012), or possibly even satellites (Lee et al., 2015). If such systems
show similar results to those seen at the leaf level, then we could greatly improve understanding of
tropical forests.
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