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Summary

� Average responses of forest foliar traits to elevation are well understood, but far less is

known about trait distributional responses to elevation at multiple ecological scales. This limits

our understanding of the ecological scales at which trait variation occurs in response to envi-

ronmental drivers and change.
� We analyzed and compared multiple canopy foliar trait distributions using field sampling

and airborne imaging spectroscopy along an Andes-to-Amazon elevation gradient. Field-

estimated traits were generated from three community-weighting methods, and remotely

sensed estimates of traits were made at three scales defined by sampling grain size and eco-

logical extent.
� Field and remote sensing approaches revealed increases in average leaf mass per unit area

(LMA), water, nonstructural carbohydrates (NSCs) and polyphenols with increasing elevation.

Foliar nutrients and photosynthetic pigments displayed little to no elevation trend. Sample

weighting approaches had little impact on field-estimated trait responses to elevation. Plot

representativeness of trait distributions at landscape scales decreased with increasing eleva-

tion. Remote sensing indicated elevation-dependent increases in trait variance and distribu-

tional skew.
� Multiscale invariance of LMA, leaf water and NSC mark these traits as candidates for track-

ing forest responses to changing climate. Trait-based ecological studies can be greatly

enhanced with multiscale studies made possible by imaging spectroscopy.

Introduction

Multiple foliar chemical traits link plant canopies to ecosystem
energy exchange, biogeochemical cycles, and multitrophic inter-
actions. For example, leaf Chl, nitrogen (N) and phosphorus (P)
play key roles in light capture and photosynthesis, and leaf N and
P also modulate decomposition and nutrient cycling rates
(Schlesinger, 1991). Photosynthesis drives the production of
nonstructural carbohydrates (NSCs), which can be stored and
converted to more complex carbon compounds (e.g. cellulose,
lignin) supporting longer-lived tissues in wood and roots (Dietze
et al., 2014). Foliar defense is also supported via the production
of polyphenols and other compounds derived from NSC. These
structural and chemical defense compounds mediate leaf
turnover, herbivory, decomposition and nutrient release in soils.

An integrative metric of leaf construction cost is dry mass per
unit leaf area (LMA) (Poorter et al., 2009). Together, these and
other foliar traits reflect the evolution of plant strategies and
adaptation to environment (Westoby & Wright, 2006; Agrawal,
2007).

Although we have learned a great deal about the functional
importance of foliar chemical traits, our knowledge weakens
when it comes to the ecological scales at which trait variation
occurs. The interactive role of biogeographic and evolutionary
processes, combined with environmental filtering and change,
generates a complex ecological mosaic that challenges past
approaches to investigating controls on the distributions of traits
in space and time. In this context, elevation gradients have long
been used to explore plant trait responses to the environment,
particularly temperature. Large increases in elevation can drive
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major changes in community-averaged leaf traits (K€orner et al.,
1988; Cordell et al., 1998), yet we know far less about how eleva-
tion and other associated environmental filters relate to plant trait
distributions at multiple spatial scales. This, in turn, limits our
ability to model and predict spatial variation in ecosystem pro-
cesses at any given point along an elevation gradient, or over the
entire elevation range in question. Should we work with average
traits, their variances, and/or their particular distributions? This
question will continue to grow in importance as dynamic vegeta-
tion models increasingly call for plant trait data to improve pre-
dictions of biospheric response and feedbacks to climate change
(Sakschewski et al., 2015).

One of the largest, contiguously vegetated elevation gradients
in the world is located at the interface of the tropical eastern
Andes and the western lowland Amazon basin in Per�u (Malhi
et al., 2010). Throughout this region, elevation, with associated
changes in climate and soils, is clearly linked to plant composi-
tional turnover (von Humboldt, 1850; Gentry, 1988). Average
forest structure, biomass, productivity and carbon cycling also
change with elevation in this region (Girardin et al., 2013; Asner
et al., 2014a; Metcalfe et al., 2014). These ecosystem-level
responses to elevation suggest that plant functional traits, many of
which underpin physiological adaptations to elevation factors such
as temperature, may also change. This hypothesis was supported
in a recent field-based, leaf-level study along the Andes–Amazon
elevation gradient, which revealed systematic shifts in average
foliar traits within communities (Asner et al., 2014b). They found
that average LMA and NSC concentrations increased with eleva-
tion, but that mean foliar N declined very weakly and foliar P
showed no trend. Although this study and a global compilation of
field-based elevation data on foliar traits (Asner & Martin, 2016)
produced similar patterns, neither study provided an understand-
ing of whether foliar trait distributions change within and among
communities along tropical forest elevation gradients.

To develop robust distributions of plant traits, the measure-
ments must resolve the contributions of many individual plants
within and across diverse environmental gradients (e.g. elevation,
climate, soils). Yet understanding how the mean, variance and
higher-order moments of plant traits vary environmentally
remains a major challenge. The most common way to estimate
trait distributions is through field sample collections, which are
labor-intensive, difficult to repeat and may not adequately cap-
ture distributions or mean values. Trait distributions derived
from field collections can also be sensitive to sampling approach.
Typical approaches include: simply assessing traits as unweighted
means of the most common species in a plot; sample collections
weighted by stem number abundance; and sample collections
weighted by species basal area (BA). Each approach has its
strengths and limitations (Cornelissen et al., 2003), and yet the
relationship between each approach remains poorly documented,
particularly in forests. We might expect that all three field-
sampling approaches would converge on similar results for
monotypic stands or very highly diverse canopies, as the effects of
stem number- or BA-weighting diminishes in these situations. It
is less clear what happens when canopies fall between these two
extremes. Moreover, the spatial scale dependence of plant trait

distributions is unknown because spatially continuous measure-
ments are not available from field-based approaches.

Remote sensing offers a way to conduct spatially explicit assess-
ments of some canopy traits and their distributions. In particular,
imaging spectroscopy now provides estimates of various foliar
traits (Kokaly et al., 2009; Ustin et al., 2009), affording a way to
derive trait distributions at landscape to regional scales. Asner
et al. (2015a) developed tropical canopy foliar trait distributions
in a small network of lowland Amazonian forest landscapes in
southern Peru, revealing substantial effects of soil type and micro-
topography on the distributions of multiple traits. However, their
work did not consider changes in elevation. Moreover, their work
was carried out over thousands of hectares of forest at a spatial
grain size (resolution) of 1 ha, thereby averaging over a large
number of canopies per sample trait estimate. No study has con-
sidered the effects of grain size or spatial extent in determining
trait distributions. This may be particularly important given that
future orbital imaging spectrometer missions may provide trait
data at grain sizes of c. 0.1–0.5 ha resolution (Stuffler et al., 2009;
Lee et al., 2015). Current airborne and future spaceborne remote
sensing may generate plant trait distributions over large spatial
extents, but only at a resolution that is much more coarse than
subcanopy leaf collections undertaken in the field. As a result,
there is a growing need for evaluating the compatibility of remote
sensing and field-based approaches for plant trait distribution
studies. We might expect that stem number- or BA-weighting of
field-based foliar trait estimates would be more closely linked to
remotely sensed estimates of traits. To our knowledge, however,
these possibilities have not been tested in any ecosystem.

Despite the cumulative information gained along the Andes–
Amazon elevation gradient in past studies, little is known about
canopy chemical trait distributions at multiple ecological scales,
as defined by spatial extent and measurement grain size (or reso-
lution), because spatially contiguous and extensive data have only
recently become available. Furthermore, no field or remote sens-
ing studies have assessed changes in trait distributions with eleva-
tion in humid tropical forests. We estimated canopy foliar trait
distributions and elevational trends using three plot-based sam-
pling approaches, and compared the results with spatially contin-
uous estimates of traits derived from airborne imaging
spectroscopy at plot and landscape levels. We asked the following
questions. How do field-based estimates of foliar traits vary
within 1.0 ha plots along this tropical elevation gradient, and do
different field sample weighting approaches result in different
trait distribution estimates? How do estimated trait distributions
derived from field sampling compare to those generated through
airborne imaging spectroscopy? How do sampling grain size and
ecological extent affect canopy foliar trait distribution patterns
along the elevation gradient?

Materials and Methods

Elevation gradient

Our study was conducted based on an environmental stratifica-
tion by elevation and soils of nine landscapes of c. 1000 ha each,
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each containing a permanent 1.0 ha plot stretching from the low-
land Peruvian Amazon to the treeline in the eastern Andes
(Table 1; Fig. 1). The plots and their surrounding landscapes
ranged in elevation from 215 to 3557 m above sea level (asl).
Two lowland Amazonian landscapes are located in the
Tambopata River basin, one of which (TAM-06; 215 m asl) is
found on floodplain alluvium soils (Cambisols) and the other
(TAM-05; 223 m asl) on elevated clay terra firme soils (Alisols).
Another landscape (PAN-02) is situated on a foreland front range
of the Andes (Plinthosols; 595 m asl) at the transition from sub-
montane to lowland forest ecosystems. The remaining submon-
tane and montane landscapes occupy the Kos~nipata Valley in the
province of Paucartambo, Region of Cusco (1527–3537 m asl;
Cambisols and Umbrisols).

The forest plots are maintained by the Andes Biodiversity
Ecosystems Research Group (ABERG, http://www.andesconser
vation.org) and the Amazon Forest Inventory Network
(RAINFOR; http://www.rainfor.org), and are part of the
ForestPlots (https://www.forestplots.net/) and Global Ecosystems
Monitoring Network (GEM; http://gem.tropicalforests.ox.ac.uk/
projects/aberg) networks. The plots are positioned in areas of rela-
tively homogeneous soil substrate and stand structure, which have
minimal evidence of human disturbance (Girardin et al., 2013).
From February 2013 to January 2014, mean annual air tempera-
ture varied from 9 to 24.4°C and precipitation ranged from 1560
to 5302 mm yr�1 across all plots along the gradient (Table 1).

Field sampling

From April to November 2013, we collected canopy samples in
each of the nine 1.0 ha field plots. Based on the most recently
available census and diameter data for each plot, a sampling pro-
tocol was adopted wherein species were sampled that maximally
contributed to plot BA (a proxy for plot biomass or crown area).
We aimed to sample the minimum number of species that con-
tributed to 80% of BA, although in the diverse lowland forest
plots we were only able to sample species comprising 60–70% of
plot BA (Table 1). For each selected species, three to five individ-
ual trees were chosen for sampling (five trees in submontane and
montane plots; three trees in lowland plots). If three trees were
not available in the plot, we sampled additional individuals of the
same species from an area immediately surrounding the plot.

Leaf collections were conducted using tree-climbing tech-
niques. For each tree, fully sunlit branches at the top of the
canopy were selected and cut, sealed in large polyethylene bags to
maintain moisture, stored on ice in coolers, and transported to a
local site for processing within 3 h, and usually < 30 min. A sub-
set of fully expanded leaves was randomly selected from the
branches for scanning to determine leaf area, and weighing to
record FW and DW for determination of leaf water concentra-
tion. Additional leaves were selected for oven-drying at 70°C and
another for acquisition of fresh leaf disks to be immediately
frozen to �80°C in liquid N. Both subsets were maintained in
their stabilized state for subsequent chemical analyses in the
Carnegie Spectranomics Library (Stanford, CA, USA). Values of
fresh leaf area were divided by DW to determine LMA. T
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Laboratory assays

Chemical analysis protocols and instrument information are
downloadable from the Carnegie Spectranomics Project website
(http://spectranomics.ciw.edu) and are summarized here. Dried
foliage was ground in a 20 mesh Wiley mill. P concentration was
determined in 0.4 g dry leaf tissue by inductively coupled plasma
optical emission spectroscopy (Therma Jarrel-Ash, Waltham,
MA, USA) after microwave digestion in 10 ml (70% concentra-
tion) nitric acid solution (CEM MARSXpress, Matthews, NC,
USA). One blank and two reference standards (Peach NIST
SRM 1547 and internal lemon leaf) were digested and measured
with each set of 40 foliar samples to track the reproducibility and
accuracy of the method.

Carbon fractions including NSC and lignin were determined
in 0.5 g dry ground leaf tissue through using sequential digestion
of increasing acidity in a fiber analyzer (Ankom Technology,
Macedon, NY, USA). Carbon fractions are presented on an ash-
free dry mass basis following ignition of the remaining sample at
500°C for 5.5 h. We note that our NSC determinations include
sugars, starch and soluble components of pectin, and thus may be
at overall higher concentration than more narrow definitions of
total NSC (Quentin et al., 2015). An internal lemon leaf stan-
dard was used as a reference with each run to ensure consistency
across runs. This standard is available upon request for use in
converting our estimates to those found elsewhere in the litera-
ture. A subset of the ground material was further processed to a
fine powder for determination of total N concentration by com-
bustion-reduction elemental analysis (Costec Analytical Tech-
nologies Inc., Valencia, CA, USA).

Frozen leaf disks were used for the total Chl and phenolic
determinations. For phenols, disks were ground in 95%
methanol using a high-throughput tissue homogenizer. A portion
of the solution was further diluted and incubated on an orbital
shaker at room temperature (15–18°C) in the dark for 48 h to
ensure proper phenol extraction. The total phenolic

concentration in solution was determined colorimetrically using
the Folin-Ciocalteau method. Phenol concentrations were mea-
sured in gallic acid equivalents relative to an eight-point Gallic
acid standard curve. Total Chl concentration was quantified
using two frozen leaf disks (1.54 cm2). These disks were rapidly
ground in 1.5 ml centrifuge tubes containing 0.75 ml 100% ace-
tone on a high-throughput tissue homogenizer (Troemner,
Thorofare, NJ, USA) with a small amount of MgCO3 to prevent
acidification. Following dilution and centrifugation for 3 min at
2000 g, the absorbance of the supernatant was measured using a
dual-beam scanning UV-VIS spectrometer (Lambda 25, Perkin
Elmer, Beaconsfield, UK).

Comparing field-based estimates of foliar traits

In the previous foliar trait study on this elevation gradient, Asner
et al. (2014b) found that interspecific variation far exceeded
intraspecific variation for most traits, and strong phylogenetic
partitioning of traits remained evident within communities,
despite community-scale shifts in many traits. This indicated that
trait variation along the elevation gradient is the result of differ-
ential and nonrandom species sorting, rather than plasticity. This
is important here because it suggests that capturing elevation
trends in canopy foliar traits requires sampling strategies that
integrate a large number of taxa per site. The Asner et al. (2014b)
sample collections were based on a phylogenetic approach with
replication of the top 15% most common species at each site. In
the present paper, we test three more common sampling schemes,
each of which is based on collection of the most common species
in each plot: unweighted – plot values and distributions calcu-
lated simply from all individual samples; species stem number
weighting by the number of individuals; and BA weighting by
the sum of the squared tree diameters at breast height. We used
ordinary least-squares regression to assess relationships among
leaf traits, elevation and each of the three sampling approaches.
We assessed the adequacy of sampling method by quantifying the

(a)

(b) (c)

Fig. 1 Geographic distribution of nine forest
elevation classes containing 1.0 ha study
plots marked with ‘X’, which are also shown
in Fig. 2. (a) Lowland landscapes hosting
TAM-05 and TAM-06 plots on terra firme
(terrace) and floodplain substrates,
respectively. (b) Submontane PAN-02
landscape. (c) Submontane to montane
landscapes SPD-01, SPD-02, TRU-04, ESP-
01, WAY-01 and ACJ-01. Inset maps of Peru
indicate the approximate location of each
landscape at the red square. Descriptions for
each field site are provided in Table 2.
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interactions between elevation and sampling approach for each
trait. If there is no interaction between elevation and sampling
approach, then the regression slopes for each method will be par-
allel. The trait data were a subset of the full census data, so the
species mean values were assigned to their corresponding taxa in
the census, thus permitting the stem number and BA values to be
used. Species stem number- or BA-weighted mean values for each
trait in each plot were calculated as:

�xw ¼
PN

i¼1 Wi � xiPN
i¼1 xi

where xw is the weighted mean trait value for the plot, xi is the
mean trait values for species i at a given plot and wi is the weight
for the ith species. The corresponding weighted standard devia-
tion (SD) for each trait was calculated as:

rw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
wi �ðxi��xw Þ2

ðN 0�1Þ
PN

i¼1
wi

N 0

vuuut

where rw is the weighted SD for the plot and N 0 is the number
of nonzero weights.

Remote sensing

Airborne remote sensing data were acquired in August 2013,
coinciding with the field campaign, using the Carnegie Airborne
Observatory-2 (Asner et al., 2012), which included a high-fidelity
visible-to-shortwave infrared (VSWIR) imaging spectrometer
and a dual-laser waveform LiDAR. We collected the data over
each study landscape from an altitude of 2000 m above ground
level (agl) at an average flight speed of 55–60 m s�1. The VSWIR
spectrometer measures spectral radiance in 427 channels span-
ning the 380–2510 nm wavelength range in 5 nm increments
(full-width at half-maximum). The VSWIR has a 34° field-of-
view and an instantaneous field-of-view of 1 mrad. At 2000 m
agl, the VSWIR data collection provided 2.0 m ground sampling
distance, or pixel size, throughout each study landscape. The
LiDAR has a beam divergence set to 0.5 mrad and was operated
at 200 kHz with 17° scan half-angle from nadir, providing swath
coverage similar to the VSWIR spectrometer. The LiDAR point
density was two laser shots m�2, or eight shots per VSWIR pixel.
The LiDAR data were combined with an embedded high-
resolution global positioning system-inertial measurement unit
(GPS-IMU) data to produce a cloud of georeferenced point data.
Digital terrain models, digital surface models (DSMs) and digital
canopy models (DCMs) were calculated using the method
described in Asner et al. (2012).

The VSWIR data were radiometrically corrected from raw
DN values to radiance (Wm�2 sr�1 nm�1) using a flat-field cor-
rection, radiometric calibration coefficients and spectral calibra-
tion data collected in the laboratory. The standardized GPS
pulse-per-second measurement was used to precisely colocate
VSWIR spectral imagery to the LiDAR data using the technique

detailed by Asner et al. (2012). The VSWIR radiance data were
atmospherically corrected using the ACORN-5 model (Imspec
LLC, Glendale, CA, USA), along with a method for minimizing
variations in atmospheric aerosol effects (Colgan et al., 2012).
The VSWIR imagery was then orthorectified to the LiDAR
DSM. The CAO VSWIR images for the nine 1.0 ha plots and
immediate c. 8 ha surroundings are shown in Fig. 2, which are
color-infrared composites of spectral bands centered at 800, 680
and 550 nm. The data values in these images are histogram-
matched to the full range of values across all images to allow for
visual comparison of canopy greenness and forest cover.

Conversion of the VSWIR spectra to estimates of canopy foliar
traits followed the method detailed by Asner et al. (2015b). First,
the coaligned VSWIR and LiDAR data were processed together
to develop a suitability map for leaf trait estimation. This suit-
ability map was based on the following filtering criteria: normal-
ized difference vegetation index (NDVI) ≥ 0.8; vegetation height
≥ 2.0 m; and minimal intra- or intercanopy shade in the VSWIR
pixel. Through a survey of > 7 million ha of VSWIR imagery
over Andean and Amazonian forests, we have found that a mini-
mum NDVI threshold of 0.8 is highly conservative, allowing
most tropical canopy foliage into the trait analysis, while exclud-
ing areas of unfoliated canopy. The 2.0 m minimum height
requirement removes bare ground and short nonforest vegetation
such as exposed grass cover. The shade mask is derived from a ray
tracing model that precisely identifies canopy location in
unshaded and unobstructed view of the VSWIR spectrometer
(Asner et al., 2007). This LiDAR-based shade mask removes
VSWIR pixels that are fully or partially shaded by adjacent
foliage, branches or crowns. Together, these filters provided a
pixel-by-pixel suitability map from which spectral reflectances
can be selected for analysis. This filtering technique has the
advantage of reducing the total canopy analysis area to a value
analogous to the ‘sunlit canopy foliage’ criterion used in field col-
lections of forest canopy foliage.

Following the preparation of the filtered VSWIR reflectance
spectra, we convolved them to 10 nm bandwidth and applied a
brightness-normalization adjustment (Feilhauer et al., 2010).
Brightness normalization utilizes ‘spectral angle’ to mitigate dif-
ferences in brightness that may arise from internal canopy shade,
which is proportional to LAI (Myneni et al., 1989; Kruse et al.,
1993). This reduces the contribution of varying LAI to chemo-
metric determinations of foliar traits from remotely sensed data
(Feilhauer et al., 2010). The resulting spectra were trimmed at
the ends (< 410 nm, > 2450 nm) of the measured wavelength
range, as well as in regions dominated by atmospheric water
vapor (1350–1480, 1780–2032 nm). We used partial least-
squares regression (PLSR; Haaland & Thomas, 1988) to quanti-
tatively convert the airborne VSWIR spectroscopy to estimates of
foliar traits using the method and equations provided by Asner
et al. (2015b). The PLSR approach is beneficial because it utilizes
the continuous spectrum as a single measurement rather than in a
band-by-band type of analysis (Martens, 2001; Boulesteix &
Strimmer, 2006). To avoid statistical over-fitting, the number of
orthogonal spectral dimensions or vectors used in the PLSR anal-
ysis was estimated by minimizing the prediction residual error
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sum of squares statistic (Chen et al., 2004). This method has been
tested and validated in the Peruvian Amazon at a series of sites
not included in the present study, but which span a wide range of
forest ecological conditions in the western Amazon and Andean
region (Asner et al., 2015b).

After obtaining estimates of foliar traits at the nominal 2 m
VSWIR sampling resolution, we averaged the data to 0.01 ha
(10 m9 10 m) and 1.0 ha (100 m9 100 m) grain sizes for analy-
sis. We selected the 0.01–1.0 ha extremes to bracket the range of
measurement resolutions that will become available from Earth
orbit. Additionally, the 0.01 ha grain size provided a means to
smooth any spurious measurements that were not removed dur-
ing the filtered described earlier, and it is about the lower limit
for ‘pairing’ field-based sampling grain size to remotely sensed
sampling. We used the 0.01 ha data within the 1.0 ha field plots
to generate remotely sensed trait distributions for each plot. We
also randomly sampled 400 points at the 0.01 and 1.0 ha resolu-
tion within each 1000 ha landscape. The 1.0 ha grain size is use-
ful because it matches the intended resolution of field sampling
in 1.0 ha plots, and because it probably represents the coarsest
resolution for future spaceborne imaging spectrometer missions.
Note that the highest elevation ACJ-01 landscape, which is on

the forest–grassland transition at treeline, is very small overall
(77 ha), so we randomly sampled 40 forested 0.01 and 1.0 ha
points surrounding the field plot. Finally, the Moran’s I statistic
was used to assess spatial autocorrelation of the canopy chemical.
Results indicated Moran’s I values < 0.21 at the plot level and
0.17 at the landscape level, thereby indicating low spatial auto-
correlation of the image-based data.

Results

Field-based trait estimates

We found strong linear increases in community-mean LMA,
NSC and leaf water concentration with increasing elevation,
independent of sample weighting approach (Fig. 3; Table 2; Sup-
porting Information Table S1). Foliar N displayed a modest
decrease (regression slopes =�15% to �20%) with increasing
elevation. Neither foliar Chl nor P displayed a significant trend
with elevation using any sample weighting approach. Defense-
related traits showed weak to variable signs of change with eleva-
tion. Lignin declined only for the unweighted field estimates.
Total phenols substantially increased with elevation, but then

Fig. 2 Color-infrared composite images
derived from Carnegie Airborne Observatory
(CAO) visible-to-shortwave infrared
(VSWIR) imaging spectroscopy of the 1.0 ha
field plots arrayed along the Andes–Amazon
elevation gradient (see Fig. 1 for plot
locations). Red, foliated vegetation; blue,
rivers, roads, and/or senescent vegetation.
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declined sharply at the highest elevation site (ACJ-01; Fig. 3).
This resulted in nonsignificant regressions against elevation
(Table 2). Trait variances (SDs) showed little to no trend with
increasing elevation (Table S1), with the exception of LMA,
which underwent an overall increase in variation with increasing
elevation.

The method for weighting the field data – unweighted, stem
number-weighted or BA-weighted – played very little role in esti-
mating the community-mean elevation trends in trait values
(Table S2). Moreover, for almost every foliar trait tested, differ-
ences in sample treatment weighting approach had no effect on
estimates of variance, skewness or kurtosis (Table S2). This
resulted in very similar regression equations, R2-values, and root-
mean-squared error relating elevation to each field-sampled foliar
trait (Table 2). Given the similarity in foliar distributions and

elevation trends among the field-based weighting approaches, we
carried forward only the unweighted field-based results to com-
pare against the remotely sensed traits.

Trait patterns and distributions

Visually there was no obvious elevation-based pattern in canopy
reflectance as viewed simply in the color-infrared images (Fig. 2)
or in natural color composite images (not shown). However, con-
version of the VSWIR imaging spectroscopy data to canopy
chemical maps did reveal elevational trends, such as shown in
Fig. 4. In this example set of data outputs, the chemical images
visually indicate that LMA (red) and NSC (green) increase with
elevation, whereas Chl (blue) shows no clear trend. Despite these
basic trends, the plots and surrounding landscapes remain highly

Fig. 3 A comparison of field-based estimates
of mean canopy foliar trait values as a
function of elevation. Field data are
presented as unweighted means among all
individuals (black), stem number abundance-
weighted means (green), and basal area-
weighted means (orange). LMA, leaf mass
per unit area; N, nitrogen; P, phosphorus;
NSC, nonstructural carbohydrates. Detailed
statistical information for each site is
provided in Supporting Information Table S1.
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variable, which highlights the challenge of integrating sampling
approach, grain size and extent to best estimate trait distribu-
tions.

The distributions of remotely sensed canopy traits varied with
increasing elevation and sampling approach (Fig. 5), but several
consistent patterns did emerge. For LMA, N, NSC, lignin and
phenols, the variance in the distributions generally increased with
increasing elevation (Table S3). This occurred for all remote sens-
ing sampling grain sizes and extents, and it was independent of
whether there was an elevational trend in the plot- or landscape-
mean trait values. Importantly, the remotely sensed trait distribu-
tions within the field plots were not always representative of the
remotely sensed distributions at landscape scales. Plot-scale repre-
sentativeness of landscapes generally decreased with increasing
elevation. At the landscape level, sampling grain size (0.01 vs
1.0 ha) had a relatively minor effect on trait distributions and
their statistical moments (red and green lines in Fig. 5, and statis-
tics in Table S3). One exception was NSC at upper submontane
elevations. We also observed increasing left skew (left tail increas-
ing) in the distributions with increasing elevation, particularly for
Chl, N and lignin, and right skew in NSC distributions with
increasing elevation (Fig. 5). This was also indicated in the statis-
tical moment information provided in Table S3.

Field-based trait distributions were poorly related to the
remotely sensed distributions along the elevation gradient, and
this mismatch generally worsened with increasing elevation
(Fig. 5). Within the 1.0 ha field plots, field sampling (dark blue
dashed lines) and remote sensing (cyan dashed lines) rarely
agreed. Understandably, plot-based field samples were more
widely distributed than were the 0.1 ha resolution sampling of
the airborne imaging spectrometer measurements. Plot-level
remote sensing also produced smoother distributions that were
closer to Gaussian in shape than was observed in the field sample-
based distributions. As a result, elevation trends in both the
means and distributions were more clearly depicted in the plot-
scale remote sensing estimates of most traits.

Elevation and scale dependence of trait distributions

We further compared elevational trends in leaf trait distributions
derived from field sampling within plots (unweighted samples
only) to the 0.01 ha remotely sensed estimates within plots, as
well as the 0.01 and 1.0 ha remotely sensed estimates at the land-
scape level (Fig. 6). With few exceptions, the differing scales of
trait estimation showed similar elevation trends. For example,
field and remotely sensed approaches indicated similar elevation

Table 2 Relationships between elevation and site-level mean canopy foliar traits along an Andes–Amazon elevation gradient in Peru, using six different
sampling approaches: field-based leaf collections in 1.0 ha plots without weighting and with abundance- and basal area-based weighting; remote sensing
(RS) at 0.01 ha resolution within 1.0 ha plots; and remote sensing at 0.01 and 1.0 ha resolution in up to 1000 ha landscapes centered on each field plot

Trait

Field Remote sensing

R2 (RMSE) Equation R2 (RMSE) Equation

Unweighted RS (0.01 ha) in 1.0 ha plots
LMA 0.86 (7.64) 13.99x + 96.76 0.94 (5.86) 17.05x + 99.09
Chl ns ns 0.88 (0.32) �0.64x + 6.10
N 0.56 (0.18) �0.15x + 2.38 ns ns
P ns ns ns ns
NSC 0.86 (2.23) 4.03x + 41.55 0.87 (5.24) 10.06x + 35.19
Water 0.84 (2.41) 4.03x + 51.41 0.61 (2.39) 2.17x + 52.84
Lignin 0.47 (2.73) �1.88x + 27.55 ns ns
Phenols ns ns ns ns

Abundance weighting RS (0.01 ha) in 1000 ha landscapes

LMA 0.80 (9.78) 14.31x + 93.37 0.87 (5.14) 9.67 + 102.65
Chl ns ns 0.73 (0.38) �0.46 + 6.98
N 0.45 (0.27) �0.18x + 2.40 ns ns
P ns ns ns ns
NSC 0.79 (3.04) 4.26x + 39.97 0.81 (4.27) 6.51 + 43.10
Water 0.87 (1.71) 3.26x + 52.39 0.74 (2.05) 2.54 + 53.30
Lignin ns ns ns ns
Phenols ns ns 0.88 (3.61) 7.22 + 101.12

Basal area weighting RS (1.0 ha) in 1000 ha landscapes
LMA 0.78 (10.04) 14.01x + 99.54 0.91 (4.95) 11.60 + 100.26
Chl ns ns 0.66 (0.33) �0.34 + 6.62
N 0.61 (0.22) �0.20x + 2.42 ns ns
P ns ns ns ns
NSC 0.74 (3.12) 3.84x + 42.03 0.92 (3.73) 9.25 + 40.78
Water 0.87 (1.76) 3.31x + 51.84 0.69 (2.29) 2.48 + 54.08
Lignin ns ns ns ns
Phenols ns ns 0.63 (6.58) 6.29 + 105.68

Regression R2 is shown, with root mean squared error (RMSE) in parentheses. The equations are reported relative to elevation (x) in km.
LMA, leaf mass per unit area; N, nitrogen; P, phosphorus; NSC, nonstructural carbohydrates; ns, not significant.
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trends for mean LMA and leaf water content (Table 2). NSC,
which increased with elevation in the field samples, also did so in
the remotely sensed data (Fig. 6e), but the rate of NSC change
was greater using imaging spectroscopy (Table 2). This was also
observed in the elevational trends among trait distributions
(Fig. 5).

Foliar Chl showed no clear trend with elevation in the field
samples (Fig. 6b; Table 2), but the higher sampling rate from
remote sensing revealed statistically significant decreases in Chl
with increasing elevation. Foliar N showed variable responses to
elevation and sampling approach (Fig. 6c). Foliar N decreased
with increasing elevation in the field sample-based estimates, but
did not do so in the imaging spectrometer results at either plot or
landscape scales. This was clearly evident in the trait distribu-
tions, which developed left skew with increasing elevation in both
field and remotely sensed samples (Fig. 5). However, the skew
was more pronounced in the field samples (Table S3). Foliar P
showed no mean elevation trend using any approach at any eco-
logical scale (Fig. 6d), although P did show slight left skew at the
highest elevations (> 2500 m asl; Fig. 5).

Defense-related traits also displayed only minor elevational
trend (Fig. 6g,h). Lignin decreased very slightly in the

unweighted field samples, but did not significantly decrease in
the remotely sensed data (Table 2). We note again that lignin did
not decrease in the field samples when community means were
calculated using either BA or stem number weighting (Fig. 2).
Phenols showed only a slight increase with elevation in the field-
based approaches (with the exception of a sharp decline at the
highest elevation site; Fig. 2), which generally agreed with the
remotely sensed sampling within the plots. However, phenols did
increase in concentration with elevation in the remote sensing
sampling at the landscape level (Fig. 6h), suggesting that the field
plots are not representative of their host landscapes.

We assessed the relative importance of elevation and the
unweighted field-based and three remotely sensed sampling
approaches on foliar trait distributions as expressed in mean, SD,
skewness and kurtosis (Tables 3, S3). Elevation, and not sam-
pling approach, was the dominant factor determining mean
changes in LMA, Chl, NSC, water and phenols. By contrast,
sampling approach was more important than elevation in deter-
mining foliar N trends. Distributional variance (SD) of LMA
was approximately equally driven by sampling approach and ele-
vation, whereas sampling approach dominated the SD of all other
foliar traits (Table 3). For both means and SD of the trait

Fig. 4 Example imaging spectrometer
composites showing differences in canopy
leaf mass per area (LMA) in red,
nonstructural carbohydrate (NSC)
concentrations in green, and CHla + b
concentrations in blue, within and around
the 1.0 ha study plots along the Andean–
Amazon elevation gradient. See Fig. 1 for
field site locations, and Fig. 2 for color-
infrared composites of the source imagery.
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distributions, the interactions between sampling approach and
elevation were generally weak but variable. The exception was
foliar N, for which the interaction of sampling approach and ele-
vation was about as important as the individual drivers in deter-
mining mean N values.

Higher-order moments of the trait distributions indicated vari-
able effects of sampling approach (field or remote sensing) and
elevation on the shape of the distributions (Table 3). Sampling
approach had a strong effect on the skew and kurtosis of the
LMA distributions. Moreover, the skew and kurtosis of foliar P
distributions were sensitive to sampling approach, elevation, and
their interaction. Other traits were more variably affected by
either sampling approach or elevation, as seen in Fig. 5.

Discussion

Along this Andes–Amazon elevation gradient, multiple foliar
traits shift their community-mean values, while others do not,
and foliar trait distributions change substantially from lowland to
montane tropical environments. Moreover, sampling approach,
whether from field collections or remote sensing, as well as sam-
pling grain size and extent have an important effect on the
derived trait distributions. As a result, interpretations of plot-
scale patterns, plot representativeness, and landscape-level shifts
in canopy traits are partially dependent upon sampling approach.

Across our study gradient, field sampling revealed monotonic
increases in LMA, with increasing variance but relatively constant

Fig. 5 Distributions of canopy foliar traits
estimated at four ecological scales. Dark blue
lines indicate distributions in traits from
hand-collected leaf samples in 1.0 ha field
plots (unweighted sample reporting from
Fig. 2). Cyan lines are for remotely sensed
(RS) traits at 0.01 ha spatial resolution in
each 1.0 ha plot. Green and red lines are
remotely sensed traits at 0.01 and 1.0 ha
spatial resolution throughout each study
landscape, respectively. LMA, leaf mass per
unit area; N, nitrogen; P, phosphorus; NSC,
nonstructural carbohydrates.

New Phytologist (2016) � 2016 The Authors

New Phytologist� 2016 New Phytologist Trustwww.newphytologist.com

Research

New
Phytologist10



distributional shape (skewness, kurtosis) within communities.
Increases in mean LMA have been observed in elevation studies
of both tropical and temperate vegetation (K€orner et al., 1986;
Roderick et al., 2000; Cornwell & Ackerly, 2009; Sides et al.,
2014). Higher LMA is associated with plant resource conserva-
tion strategies under increasingly adverse growing conditions.
Although studies indicate that LMA and leaf water content are
often anti-correlated (Roderick et al., 2000), our results indicate
that both increase with elevation. This may be because of a

parallel increase in thickness of the foliage, allowing for more
water content, with increasing elevation. The underlying drivers
of changing LMA include a diverse array of climate and soil fer-
tility factors (Poorter et al., 2009). Temperature and radiation,
and perhaps humidity, are among the most important on tropical
elevation gradients, as observed by Cordell et al. (1998). Across
our gradient, precipitation undergoes a mid-elevation peak but
no overall trend, whereas temperature clearly declines with eleva-
tion (Table 1). Increasing community-mean LMA thus suggests

(a) (e)

(b) (f)

(c) (g)

(d) (h)

Fig. 6 Elevation dependence of canopy foliar
traits estimated at four ecological scales: dark
blue lines and boxes indicate trends in foliar
traits collected by hand in the 1.0 ha field
plots (unweighted sample reporting from
Fig. 2); cyan lines and boxes are for remotely
sensed traits at 0.01 ha spatial resolution in
each 1.0 ha plot; green and red lines and
boxes are remotely sensed traits at 0.01 and
1.0 ha spatial resolution throughout each
study landscape, respectively. Error bars
indicate� 1SD about the mean value per
site. LMA, leaf mass per unit area; N,
nitrogen; P, phosphorus; NSC, nonstructural
carbohydrates. Regression results are shown
in Table 2.
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that temperature is a broad environmental filter of this trait.
However, strong elevation-dependent increases in LMA variance
(Fig. 5) also suggest that other microclimatic factors, such as radi-
ation and humidity, may drive trait-based niche filling within
communities at higher elevations.

Remotely sensed estimates of average changes in LMA and leaf
water at all three spatial scales of analysis (0.01 ha within plots;
0.01 and 1.0 ha across landscapes) generally agree with the field-
based sampling (Fig. 6). Similar results between the unweighted
and weighted field samples, as well as with the fine-grain and
coarse-grain remote sensing at contrasting spatial extents, suggest
that LMA and leaf water shift with spatial consistency within and
across ecosystems along the elevation gradient. Ecologically, this
finding further suggests that community-scale distributions of
LMA and leaf water shift in response to large-scale environmental
drivers, while intracommunity variation is maintained by niche-
based partitioning of resources (Cornwell & Ackerly, 2009).

Increases in LMA are often associated with decreases in mass-
based foliar N concentration (Wright et al., 2001) and reduced
rates of nutrient supply via decomposition (Schuur & Matson,
2001; Nottingham et al., 2012). In a fertilizer experiment along
our gradient, Fisher et al. (2013) found some evidence for declin-
ing N availability with elevation, which would underpin our
field-estimated declines in mean leaf N (Fig. 3). However, we
had mixed results when comparing the elevation trends in foliar
N using field and remote sensing approaches (Fig. 6). The uncer-
tainty results from a combination of factors affecting the derived
N distributions and the sensitivity of each sampling approach.
First, field-based and remotely sensed N distributions showed
increasing left skew with increasing elevation (Fig. 5; Table S3).
This suggests similar overall trending among sampling
approaches. However, the left skewing of the distributions was
more pronounced in the field samples, relative to the remotely

sensed samples, and this generated the differences in the mean
trends between approaches. While the community-mean values
shifted downward with elevation in the field samples, but not the
remotely sensed samples, the community medians did shift
downward using all sampling approaches. Second, a field study
by Asner et al. (2014b) found a 13–18% decline in foliar N con-
centration with increasing elevation, a result based on thousands
of canopies and species throughout the region. Our field data
show a foliar N decline of 15–20% depending upon how the
samples are weighted locally. However, the remote sensing
method used here reports an absolute uncertainty of
0.3� 0.06 mg g�1 (Asner et al., 2015b), which equates to similar
variation (c. 15%) of the range observed in the field samples
across our elevation gradient (Fig. 2). Site-by-site comparisons
between field-based and remotely sensed estimates of foliar N
show little to no statistical differences at lower elevations
(< 1500 m), above which the field-based measurements decline as
the remote sensing estimates remain more constant. It is therefore
unsurprising that the field and remote sensing approaches do not
agree on a mean elevation trend for this set of nine plots and their
surrounding landscapes.

When foliar N is examined on an area basis, both field and
remote sensing approaches indicate increasing area-based N with
elevation, although the field estimates change at a lower rate
(Fig. S1). Because there is no obvious pattern to solar radiation
across the sites (Table 1), the trend of increasing area-based N
with increasing elevation is probably a result of decreasing tem-
peratures, which fall from 24 to 9°C. This pattern has been docu-
mented in other studies and may be associated with increasing
mesophyll layer thickness (K€orner et al., 1986; Hikosaka et al.,
2002). This may also explain the higher water content in the
leaves at higher elevations. An important next step is to map
additional elevation gradients with the goal of clarifying these

Table 3 Multiple linear regression model F-statistics relating canopy foliar traits along an Andes–Amazon elevation gradient in Peru, using four sampling
approaches (SA): unweighted field-based leaf collections in 1.0 ha plots; remote sensing at 0.01 ha resolution within 1.0 ha plots; and remote sensing at
0.01 and 1.0 ha resolution in up to 1000 ha landscapes centered on each field plot

Trait SA Elevation SA9 elevation SA Elevation SA9 elevation

Mean Standard deviation
LMA 9.9 250.0 3.8 55.9 65.2 5.2
Chl 14.0 34.2 ns 36.2 ns 6.5
N 9.1 4.3 5.5 44.0 ns 16.2
P ns ns ns 32.5 6.4 ns
NSC 6.8 180.5 5.2 16.1 7.5 ns
Water ns 79.5 ns 84.6 ns ns
Lignin ns ns ns 28.4 7.5 5.4
Phenols 7.1 13.9 ns 45.9 4.5 5.4

Skewness Kurtosis

LMA 11.2 ns ns 5.0 ns ns
Chl ns ns ns ns ns ns
N 3.7 ns 5.6 ns ns ns
P 19.3 4.9 6.0 14.8 17.1 8.7
NSC ns ns 6.0 ns ns ns
Water 6.0 ns ns ns ns ns
Lignin ns ns 3.2 ns ns ns
Phenols ns ns ns ns 6.6 3.4

LMA, leaf mass per unit area; N, nitrogen; P, phosphorus; NSC, nonstructural carbohydrates; ns, not significant.
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and other subtle changes in foliar nutrient concentrations by inte-
grating over larger areas. This could be particularly useful given
the persisting paradigm that montane tropical forest productivity
is N-limited, whereas lowland forests are P-limited (Townsend
et al., 2008). If foliar chemistry is reflective of nutrient limitation
(Vitousek, 1982), our overall findings suggest no strong elevation
trend in N or P limitation on this particular gradient.

We measured a 50–70% increase in foliar NSC concentration
in canopies along the elevation gradient, with remote sensing
producing the steeper elevation trend (Fig. 6). Within-
community variation in foliar NSC also increased substantially at
higher elevations. Asner et al. (2014b) suggested that increasing
NSC concentrations with elevation could be related to increased
waxiness or to reductions in the conversion of NSC to cellulose
at higher elevations. Although leaf waxes do increase with eleva-
tion, they account for far less than 1% of leaf mass and are uncor-
related with NSC along our Andes–Amazon gradient (S. J.
Feakins & T. Peters, unpublished). The possibility of an NSC-
to-cellulose conversion bottleneck remains supported by an
observed decrease in foliar Ca with elevation (Asner et al.,
2014b), because Ca plays a crucial role in the conversion of NSC
to cell walls (Demarty et al., 1984; Gilliham et al., 2011). Increas-
ing within-community variation in NSC also suggests a role for
microsite filtering of key nutrient controls. Nonetheless, compet-
ing explanations may have more to do with climate: NSC (partic-
ularly sugars) in extracellular fluid reduces the freezing point of
intracellular leaf components similar to antifreeze (Thomashow,
1999). Tropical trees may store more NSC at higher elevations
(Beck, 1994), which may be particularly useful above c.
2000 m asl at night. Resolving linkages among NSC, temperature
and other factors such as nutrient availability will require in situ
experimental manipulations along tropical elevation gradients.
Remote sensing of forest canopy NSC will be particularly helpful
in locating contrasting sites for field and laboratory studies.

With increasing elevation, we observed a general increase in
the distributional variance of most foliar traits (Fig. 5). Because
precipitation and solar radiation do not systematically change
with elevation on our gradient, increasing trait variance may be
mostly driven by decreasing temperatures. Lower temperatures,
and perhaps spatially and temporally variable freezing conditions
at high elevations, may beget variation in foliar traits, such as
LMA, among coexisting species within high-diversity communi-
ties. Changes in trait distributional variances were conspicuously
absent, however, for foliar P, which maintained a relatively nar-
row range within communities from the Amazonian lowlands to
the treeline in the Andes (Fig. 5). Our measured average mass-
based foliar P values of 0.11–0.18% are at the middle to the
upper end of the range for humid tropical forests (Townsend
et al., 2007), suggesting that P is not highly limiting in our sites,
as is found in forests on highly weathered soils elsewhere in the
Amazon basin (Townsend et al., 2002). The elevation indepen-
dence of P variation on our gradient may be reflective of generally
high P availability in western Amazonian and Andean forests
(Quesada et al., 2009), or it may indicate a lack of temperature
sensitivity of rock-derived nutrients to increasing elevation
(Cleveland et al., 2011; Gornish & Prather, 2014). By contrast,

foliar N variance increased with elevation, suggesting competi-
tion among and adaptation of species to decreasing resource
availability.

We have established the strong elevation dependence of LMA,
leaf water, and NSC concentrations along the study gradient.
These three traits increase in both mean value and variance up
the mountain; however, the pattern is much clearer when mea-
suring these traits at whole landscape level, rather than in 1 ha
plots (Fig. 5). Whether by hand-picking leaves or by remote sens-
ing of canopies, plot-level estimates yielded noisier information
on these traits. Marvin et al. (2014) found that 1 ha plots poorly
represented their host landscapes in above-ground carbon stocks
across the Andes–Amazon region, particularly at higher eleva-
tions. Our results similarly suggest that plot-based trait distribu-
tions are not always representative of landscape trait
distributions. By using remote sensing at the landscape level to
measure broadscale shifts in the distributions of LMA, leaf water,
and NSC, it may be possible to monitor for climatic stress, par-
ticularly increasing temperatures and/or drought effects, on plant
canopies. Over time with improved instrumentation and
methodologies, remote sensing of LMA, leaf water, and NSC has
become increasingly possible, particularly with imaging spec-
trometers (Roberts et al., 2004; Ustin et al., 2004; Asner et al.,
2011; Asner & Martin, 2015). This may be particularly valuable
for assessing changes in forest productivity and mortality caused
by increasing temperature and drought in the Amazon basin
(Phillips et al., 2009; Duffy et al., 2015).

Despite some of the similarities observed in the mean elevation
trends for traits measured with field- or remote sensing-based
approaches, we found pronounced effects of sampling approach
on trait distributions. These effects exceeded those expected by
the averaging effect of more remotely sensed samples relative to
field samples. The shape of the trait distributions changed by
sampling approach as well as by sampling grain size and extent.
Sampling extent had the largest effects on trait variance and skew-
ness, and less so on kurtosis. Distributional differences as a result
of the sampling approach (field, remote sensing) and grain size
(leaf level, 0.01, 1.0 ha) increased with elevation, which empha-
sizes the value of wide-area mapping or sampling as environmen-
tal heterogeneity increases with elevation in the Andes.

Our results also provide an opportunity to compare and
contrast field and remotely sensed approaches with trait-based
ecological studies. Remote sensing offers far more measurement
coverage than can be achieved in the field. The economy-of-
scale effect is enormous, for example, with the Carnegie Air-
borne Observatory routinely mapping well over 100 000 ha of
forest each day at 1 m spatial resolution. For our study, c.
8 months were spent by technicians in the field to collect foliar
samples, followed by another 8 months in the laboratory to
complete chemical assays. By contrast, the airborne data acqui-
sition, processing and conversion to chemical and LMA esti-
mates will be just days of effort in the future, given that the
approach has now been developed for operational use in the
western Amazon. However, doing so requires that the airborne
laboratory be deployed to the region, which takes financial,
technological and logistical capacity.
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An important way to advance the role of remote sensing for
canopy foliar trait studies is by taking high-fidelity imaging spec-
trometers from their current airborne vantage points to low-Earth
orbit. The only civilian imaging spectrometer to achieve orbit is
Hyperion, onboard the Earth Observing-1 satellite (Ungar et al.,
2003). However, Hyperion is a low-fidelity imaging spectrometer
that has proved difficult for use in the types of chemical estimates
reported in our paper (e.g. Townsend & Foster, 2002; Smith
et al., 2003). The German EnMAP mission is moving forward
for a 2018 launch with a spatial resolution of 30 m or 0.1 ha
(Stuffler et al., 2009), and could be sufficient to achieve some of
the measurements demonstrated here. NASA also has plans for
the HyspIRI satellite mission sometime after 2020 (Lee et al.,
2015), which could provide high-fidelity spectroscopy at 30–
60 m (0.1–0.2 ha) resolution. Perhaps in the future, mapping of
canopy foliar traits and their distributions will be routine from
Earth orbit. Mapping and monitoring of changes in plant canopy
traits, and their distributions, are key to understanding biospheric
responses to climatic events such as drought, as well as longer-
term changes in climate conditions (Schimel et al., 2013). Fur-
thermore, changes in the geographic distribution of plant canopy
functional traits may be key indicators of changing biological
diversity at landscape to global scales (Jetz et al., 2016). Making
plant functional trait mapping and monitoring routine from
Earth orbit would greatly enhance our understanding of our
rapidly changing planet.
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