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Abstract 

Background 

The carbon stored in vegetation varies across tropical landscapes due to a complex mix of 
climatic and edaphic variables, as well as direct human interventions such as deforestation 
and forest degradation. Mapping and monitoring this variation is essential if policy 
developments such as REDD+ (Reducing Emissions from Deforestation and Forest 
Degradation) are to be known to have succeeded or failed. 

Results 

We produce a map of carbon storage across the watershed of the Tanzanian Eastern Arc 
Mountains (33.9 million ha) using 1,611 forest inventory plots, and correlations with 
associated climate, soil and disturbance data. As expected, tropical forest stores more carbon 
per hectare (182 Mg C ha-1) than woody savanna (51 Mg C ha-1). However, woody savanna is 
the largest aggregate carbon store, with 0.49 Pg C over 9.6 million ha. We estimate the whole 
landscape stores 1.3 Pg C, significantly higher than most previous estimates for the region. 
The 95% Confidence Interval for this method (0.9 to 3.2 Pg C) is larger than simpler look-up 
table methods (1.5 to 1.6 Pg C), suggesting simpler methods may underestimate uncertainty. 
Using a small number of inventory plots with two censuses (n = 43) to assess changes in 
carbon storage, and applying the same mapping procedures, we found that carbon storage in 
the tree-dominated ecosystems has decreased, though not significantly, at a mean rate of 1.47 
Mg C ha-1 yr-1 (c. 2% of the stocks of carbon per year). 



Conclusions 

The most influential variables on carbon storage in the region are anthropogenic, particularly 
historical logging, as noted by the largest coefficient of explanatory variable on the response 
variable. Of the non-anthropogenic factors, a negative correlation with air temperature and a 
positive correlation with water availability dominate, having smaller p-values than historical 
logging but also smaller influence. High carbon storage is typically found far from the 
commercial capital, in locations with a low monthly temperature range, without a strong dry 
season, and in areas that have not suffered from historical logging. The results imply that 
policy interventions could retain carbon stored in vegetation and likely successfully slow or 
reverse carbon emissions. 

Keywords 

Eastern Arc Mountains; Tanzania; IPCC Tier 3; REDD+; Forest; Disturbance; Degradation; 
Ecosystem service 

Background 

Tropical forests are globally significant ecosystems; accounting for ~50% of global forest 
area [1], storing ∼ 45% of all carbon in terrestrial vegetation [2-4], maintaining high 
biodiversity [5], and providing ecosystem services, such as timber, non-timber forest products 
[6], and climate change mitigation [7,8]. However, within the last few decades, vast areas of 
tropical forests have been converted to other land-uses or degraded. For example, between 
1990 and 1997, 4.4-7.2 million hectares of humid tropical forest were converted each year 
and an additional 1.6-3.0 million hectares of forest were visibly degraded [9]. This process 
increased in the early 2000s, with an estimated 5.1-5.7 million hectares of humid tropical 
forest (and 3.5-4.7 million hectares of dry tropical forest) deforested per year between 2000 
and 2005 [10]. The gradual and sustained reduction in forest quality and quantity has resulted 
in substantial emissions of CO2 [11]. Globally, deforestation and forest degradation 
accounted for 6-20% of anthropogenic GHG emissions in the 1990s and early 2000s [12-14]. 
Tropical regions make a substantial contribution to this, emitting 0.7-1.5 Pg C yr-1 between 
1990 and 1999 [9,15-17] and 0.71.5 Pg C yr-1 between 2000 and 2007 [13,16-18]. These 
processes also impact the future potential of forests to remove carbon from the atmosphere 
[7,19,20]. 

Recently, attempts to mitigate increasing anthropogenic CO2 emissions through reducing 
emissions from degradation and deforestation (REDD+) have been instigated [21]. The 
REDD+ programme is aimed at contributing to a reduction in greenhouse emissions whilst 
providing economic incentives for better management and protection of forests. This policy 
has been widely welcomed and may provide a financial incentive to significantly reduce 
carbon emissions [22,23], although the equity and justice issues surrounding the impact on 
local livelihoods are actively debated [24,25]. Key technical issues for the successful 
implementation of REDD+ include (but are not limited to) the accuracy of monitoring 
systems, preventing leakage and establishing accurate historical baselines. Thus, the success 
of REDD+, in part, rests on robust scientific information on the magnitude and extent of 
carbon storage in tropical regions and how it changes over time [26]. 



The Intergovernmental Panel on Climate Change (IPCC) provide a three “Tier” system 
through which carbon stocks and emissions can be reported, each with a different level of 
methodological complexity and accuracy. Tier 1 is the simplest method, using global default 
values obtained from the IPCC literature [27,28]. The intermediate Tier 2 level improves on 
Tier 1 by using country specific data. Tier 3 is the most rigorous approach, using local forest 
inventory data, focusing on the direct measurement of trees, repeated over a time series [27-
29]. Here we develop a Tier 3 methodology for the Eastern Arc Mountains (EAM) watershed 
area. 

The estimates become progressively more robust from Tier 1 to 3 due to changes in two main 
systematic errors [29]. The first, completeness, refers to the number of IPCC carbon pools 
that are included, with studies including all five pools (aboveground live, litter, coarse wood 
debris [CWD], belowground and soil carbon) considered complete. The second, 
representativeness, derives from the substantial natural variability in the carbon stored across 
landscapes, even within a biome or country [30]. The aboveground biomass of a forest within 
a landscape may differ considerably from global default (Tier 1) values or even from country-
specific (Tier 2) values. For example, in the Peruvian Amazon, data from the Los Amigos 
Conservation Concession [31] were shown not to be representative of forests nationally. 
Nearby forests situated to the north and south of this local study are estimated to contain 20-
35% less carbon per unit area [32], suggesting that Los Amigos Conservation Concession is 
an area of locally high biomass. Since Tier 3 methods account for variation observed within 
biomes and countries, the representativeness of the carbon estimates is higher than those 
associated with Tier 1 and 2 methodologies [32,33]. 

However, Tier 3 methods are more expensive [34,35] and some nations may lack the capacity 
to adopt such methods [36]. Whilst, in some cases, the capability to apply Tier 3 guidelines is 
being rapidly developed, multi-temporal inventory data and data on historical carbon stock 
changes can take several decades to accrue [37,38]. It is expected that REDD+ requirements 
will allow data provisions from several tiers in a single report. Highly variable and/or 
substantial carbon pools should be estimated using Tier 3 methodology (e.g. forest 
aboveground live carbon [ALC]), whilst Tier 1 or Tier 2 methodology may be sufficient for 
smaller carbon pools (e.g. CWD) or carbon poor land cover categories (e.g. bare ground). 

In Tier 3 methods, in order to extrapolate from plot data, it is necessary to develop 
correlations with remotely sensed data to scale to the study area or country-wide estimates. 
Generally, carbon storage is either estimated via statistical correlation with electromagnetic 
properties, ground-truthed by volumetric measurements, such as diameter at breast height 
(DBH), which are converted to biomass estimates using allometric equations. A variety of 
remotely sensed data sources have been employed for carbon mapping and these can be 
aggregated into four groups: photographic imagery, RADAR, LiDAR, and ancillary 
geographic information systems (GIS) data (see Additional file 1: SI1 for an evaluation of 
each method). Here, we use ancillary GIS data as such data have three main advantages: 1) 
wide availability, often free of charge; 2) a suitable resolution (e.g. 90 m [39]); and 3) 
correlations with these ancillary GIS data may indicate which variables directly affect carbon 
storage. Developing an understanding of how these variables influence carbon storage is vital 
for accurate scenarios of future emissions. 

Here, we correlate carbon storage estimates from tree inventory plots (n = 1,611, median size 
= 0.1 ha) with data on climatic (e.g. temperature, precipitation, and solar radiation), edaphic 
(e.g. soil water holding capacity and soil fertility) and proxy variables for direct human 



interventions (e.g. governance type, distance from the main economic demand centres, 
population pressure, and historical logging), and variables that derive from climate-human 
interactions (e.g. burnt area index) for the Tanzanian watershed of the Eastern Arc Mountains 
(hereafter, EAM [40]), which covers 33.9 million ha (Figure 1; see Swetnam et al (2011) [41] 
for further details). We develop Tier 3 type correlation equations to estimate the total ALC 
stored across the forested and wooded land cover categories, an advancement on previous 
Tier 2 estimates for the region presented in Willcock et al (2012) [42]. Additionally, we 
investigate the most influential correlates of spatial differences in carbon storage and how 
these result from changes in either species composition affecting wood density (specific 
gravity) or the number of large trees present. Lastly, a smaller number of inventory plots (n = 
43, median size 0.1 ha) have two censuses, and by applying the same mapping procedures, 
we assess changes in carbon storage over time, providing a first-order estimate of 
sequestration across the region. 

Figure 1 The Eastern Arc Mountains of Tanzania and Kenya [40]. The study area is the 
Eastern Arc watershed in Tanzania [41]. 

Results 

Carbon stocks 

Utilising 1,611 plots and scaling to the 33.9 million ha study area we estimate that 1.32 (95% 
confidence interval [CI] ranges from 0.89 to 3.16) Pg C was stored in the aboveground live 
vegetation in the year 2000 (Figure 2; Table 1). Woodland and bushland contributed most to 
the amount of stored aboveground live carbon (ALC) in the study region, with open 
woodland storing the most ALC (0.49 [0.47 to 1.60] Pg C over 9.6 million ha); followed by 
bushland (0.29 [0.15 to 0.51] Pg C over 5.0 million ha) and closed woodland (0.18 [0.13 to 
0.61] Pg C over 1.8 million ha). 

Figure 2 Aboveground live carbon storage in the study area (a), with upper (b) and 
lower (c) pixel based 95% CI. See text for details on methods. 



Table 1 Aboveground live carbon stored within the study area for the year 2000, estimated by this and previous studies 
Study Aboveground live 

carbon, Pg 
(95% CI range) 

Methodology Resolution (m2) Disturbance included? Tanzanian on-
the-ground data? 

Present study* – Tier 3 1.32 (0.89-3.16) Correlation equations derived using remotely 
sensed influential variables. 

100 Anthropogenic variables represent human 
disturbance. Natural disturbance variables 
also included. 

Yes 

Willcock et al (2012)* – Original Tier 
2 [42] 

1.58 (1.56-1.60) Land cover based look-up table. 100 Only where land cover categories are 
identified as disturbed (e.g. cropland 
mosaics). 

Yes 

Willcock et al (2012) – Harmonised 
Tier 2 [42] 

1.64 (1.52-1.76) Land cover based look-up table. 100 Only where land cover categories are 
identified as disturbed (e.g. cropland 
mosaics). 

Yes 

Baccini et al (2012) – Tier 1 [3] 2.03 Derived from MODIS and GLAS LiDAR data. 500 Partially includes disturbance through 
impacts on canopy heights. 

Yes 

Saatchi et al (2011) – Tier 1 [4] 0.83 Derived from MODIS, SRTM, QSCAT and 
GLAS LiDAR. 

1000 Partially includes disturbance through 
impacts on canopy heights. 

No 

Hurtt et al (2006) HYDE-SAGE – Tier 
1 [46] 

0.63 Modelled from the Miami LU ecosystem 
model with cropland data from the Centre for 
Sustainability and the Global Environment. 

~110,000 Contains simple submodels of natural plant 
mortality, disturbance from fire, and organic 
matter decomposition, as well as wood 
harvesting. 

No 

Hurtt et al (2006) HYDE – Tier 1 [46] 0.41 Modelled from the Miami LU ecosystem 
model. 

~110,000 Contains simple submodels of natural plant 
mortality, disturbance from fire, and organic 
matter decomposition, as well as wood 
harvesting. 

No 

Baccini et al (2008) – Tier 1 [47] 0.34 Derived from MODIS and GLAS LiDAR data. 1000 Partially includes disturbance through 
impacts on canopy heights. 

No 

* This study and Willcock et al (2012) are not independent as they are derived from the same underlying data and utilise the same look-up table 
values. 



Best estimate values from our methodology, per unit area, in each land cover class, are given 
in Table 2. Forest contained the greatest ALC per unit area, with highest values in sub-
montane forest (189 [95 to 588] Mg ha-1), followed by lowland (182 [152- to 360] Mg ha-1), 
upper montane (166 [69 to 533] Mg ha-1), montane (130 [62 to 702] Mg ha-1), and forest 
mosaic (121 [55 to 485] Mg ha-1). Woodlands held less ALC than forests, with closed 
woodland storing 100 (70 to 331) Mg ha-1 and open woodland storing 51 (38 to 165) Mg ha-1 
(Table 2), but more than the landscape average of 39 (26 to 93) Mg ha-1. 

Table 2 The mean (and 95% CI) estimates of forest characteristics investigated in this 
study (carbon storage, carbon sequestration, WSG, the intercept from the power law 
relationship and the gradient from the power law relationship) separated by land cover 
category 

Land cover category [41] Carbon storage 
(Mg ha-1) 

Carbon sequestration 
(Mg ha-1 yr -1) 

WSG 
(g cm-3) 

The intercept from the 
power law relationship 

The gradient from the 
power law relationship 

Lowland Forest (<1000 m) 182 (152 to 360) -0.91 (-7.08 to 4.29) 0.60 (0.59 to 0.60) 6.01 (2.94 to 5.17) -0.93 (-1.04 to -0.82) 
Sub-montane forest (1000-1500 m) 189 (95 to 588) -2.02 (-11.06 to 1.29) 0.58 (0.57 to 0.58) 5.95 (3.68 to 8.23) -1.31 (-1.48 to -1.14) 
Montane Forest (1500-2000 m) 130 (62 to 702) -2.03 (-11.85 to 1.07) 0.60 (0.59 to 0.60) 6.95 (3.51 to 10.39) -1.57 (-1.82 to -1.32) 
Upper-montane forest (>2000 m) 166 (69 to 533) -2.08 (-10.49 to 1.23) 0.60 (0.58 to 0.60) 7.03 (4.60 to 9.45) -1.61 (-1.93 to -1.26) 
Forest mosaic 121 (55 to 485) -1.18 (-6.69 to 2.92) 0.56 (0.56 to 0.56) 9.22 (6.98 to 11.46) -1.90 (-1.99 to -1.81) 
Closed Woodland 100 (70 to 331) -1.24 (-7.91 to 2.63) 0.64 (06.2 to 0.65) 6.67 (4.95 to 8.60) -1.55 (-1.85 to -1.30) 
Open Woodland 51 (38 to 165) -1.49 (-7.53 to 2.05) 0.61 (0.59 to 0.62) 6.38 (4.88 to 7.82) -1.45 (-1.70 to -1.19) 

Our sequestration model suggests that the landscape may be losing 0.05 (-0.07 to 0.26) Pg C 
yr-1 (mean net flux to atmosphere of 1.47 [-2.13 to 7.75] Mg C ha-1 yr-1). Of the 12.3 million 
ha of tree-dominated land in our study area, only 1.4% (0.17 million ha) shows a carbon 
decrease over the entire 95% CI range and only 0.8% (0.10 million ha) a definite carbon 
increase (Figure 3). The locations showing net carbon uptake are in the Udzungwa 
mountains, while the locations with net reductions in carbon storage are mainly in the Pare 
and Usambara mountains. 

Figure 3 Aboveground live carbon sequestration in tree-dominated land cover 
categories within the study area (a), with upper (b) and lower (c) pixel based 95% CI. 
See text for details on methods. 

Links between carbon stock and influential variables 

The variables that influence carbon storage and sequestration may be inferred from 
relationships within the correlation models. Forward selection results are presented in the 
following paragraphs as these best indicate causal relationships [43-45]. In general, backward 
models were in close agreement with forward models (Tables 3 and 4; Additional file 1: 
Tables S1-S3). 

  



Table 3 The coefficients and associated p-values of the variables correlated with 
aboveground carbon storage using both forward and backward selection procedures 

Variable (where appropriate, units are given in brackets) Group Forward  Backward 
Coefficient p-value Coefficient p-value 

(Intercept) n/a -1.21E + 03 3.14E-03 -2.80E + 00 7.55E-01 
Natural logarithm of the population pressure with decay 
constant of 12.5 km 

Anthropogenic 1.06E + 00 1.06E-05 1.42E + 00 2.27E-06 

Natural logarithm of the population pressure with decay 
constant of 16.7 km 

Anthropogenic n/a n/a 1.42E + 00 2.27E-06 

Distance to roads (km) Anthropogenic 1.15E-04 1.09E-03 1.78E-04 1.30E-05 
Historical logging – Partially logged (no logging/partially 
logged) 

Anthropogenic -2.10E + 00 1.09E-03 -3.83E + 00 4.97E-07 

Cost distance to Dar es Salaam Anthropogenic 3.41E-05 2.00E-03 2.58E + 00 5.46E-03 
Natural logarithm of the cost distance to market towns Anthropogenic -6.05E-01 5.24E-02 -9.85E-01 1.89E-02 
Governance – local (national/local/joint/unknown) Anthropogenic 4.24E + 00 9.29E-03 n/a n/a 
Governance – national (national/local/joint/unknown) Anthropogenic -7.95E-03 9.78E-01 n/a n/a 
Governance – unknown (national/local/joint/unknown) Anthropogenic 6.26E-01 7.10E-01 n/a n/a 
Mean annual monthly temperature range (°C) Climatic -9.79E-01 2.00E-16 -1.15E + 00 1.98E-13 
Mean annual minimum monthly temperature (°C) Climatic n/a n/a 1.09E + 00 3.07E-16 
Mean annual maximum monthly temperature (°C) Climatic n/a n/a -1.15E + 00 1.98E-13 
Mean number of dry months annually Climatic -2.28E-01 2.57E-02 -3.09E-01 5.58E-03 
Total available water capacity of the soil (vol.%, 
-33 to -1500kPA conforming to USDA standards) 

Edaphic -3.75E-01 1.16E-05 -8.59E-01 3.05E-05 

Total nitrogen content of the soil (g kg-1) Edaphic n/a n/a -4.13E-01 2.50E-03 
Total carbon content of the soil (g kg-1) Edaphic n/a n/a 6.18E + 00 1.15E-03 
pH of the soil (pH) Edaphic n/a n/a 1.73E + 00 2.96E-02 
Spatial autocorrelation term 5 Spatial 6.45E + 01 3.15E-03 6.60E + 00 1.18E-01 
Spatial autocorrelation term 7 Spatial -8.48E-01 3.57E-03 -1.71E-01 1.45E-01 
Spatial autocorrelation term 4 Spatial n/a n/a 6.60E + 00 1.18E-01 
Spatial autocorrelation term 3 Spatial n/a n/a -1.71E-01 1.45E-01 

Table 4 The coefficients and associated p-values of the variables correlated with 
aboveground carbon sequestration 
Variable Coefficient p-value 

(Intercept) 0.032 0.890 
PC1 -0.112 0.006 
PC3 -0.255 0.010 
PC5 -0.412 0.012 

Carbon storage (adjusted R-squared [Adj R-sq] = 0.18) is correlated positively with the 
natural logarithm of the population pressure with decay constant of 12.5 km (p-value < 0.001) 
and increased by 1 Mg ha-1 for every 8700 km from a road (p-value < 0.010), and every 
30,000 units in the cost distance to Dar es Salaam (p-value < 0.010). Carbon storage 
decreased by 1 Mg ha-1 for every 1°C increase in mean annual monthly temperature range (p-
value < 0.001), every 2.7% rise in the total available water capacity of the soil (p-value < 
0.001), and every 4.4 month increase in the mean number of dry months annually (p-value < 
0.050). Carbon storage was 2.1 Mg ha-1 lower in areas where historical logging was present 
(p-value < 0.010), and 4.2 Mg ha-1 higher in areas under the control of local 
communities/governments (p-value < 0.010). Thus, carbon storage is high in areas far from 
the commercial capital, with a low monthly temperature range, without a dry season, that 



have not suffered from historical logging and are under local community/government control 
(Figure 4; Table 3). 

Figure 4 The modelled effect of most influential, significant anthropogenic (a, b, and c), 
climatic (d and e) and edaphic (f) variables of aboveground live carbon storage. Dashed 
red lines indicate the modelled 95% CI. The data is indicated by black lines above the x-axis. 

The rate of carbon sequestration correlated with three principal component (PC) axes 
(presented in order of influence; Adj R-sq = 0.41). Carbon sequestration was negatively 
correlated with the soil fertility axis (PC5; p-value < 0.050), warmer temperatures and longer 
dry seasons (PC3; p-value < 0.050), and with increased anthropogenic disturbance (PC1; p-
value < 0.010). Thus, carbon sequestration was highest in less fertile areas with little or no 
drought and little anthropogenic disturbance (Table 4). 

Wood specific gravity (WSG; Adj R-sq = 0.28; see Additional file 1: SI2) was most strongly 
affected by the annual mean burned area probability (increasing by 1 g cm-3 for every 0.04 
increase; p-value < 0.001) and the total available water capacity of the soil (decreasing by 1 g 
cm-3 for every 82.0% increase; p-value < 0.001). Thus, WSG is higher in burnt areas with 
little available water (Additional file 2: Figure S1; Additional file 3: Figure S2; Additional 
file 1: Table S1). 

The intercept of the power law relationship (an indication of potential stem density [see 
Additional file 1: SI3]; Adj R-sq = 0.30) was most affected by the natural logarithm of the 
population pressure with decay constant of 12.5 km (positive correlation; p-value < 0.001) 
and the mean annual monthly temperature range (increasing by 1.0 for every 1.2°C increase; 
p-value < 0.001). Thus, the density of smaller stems increases in areas with a high population 
pressure and large temperature fluctuations (Additional file 3: Figure S2; Additional file 4: 
Figure S3; Additional file 1: Table S2). 

Correlations identified for the gradient of the power law relationship (an indication of the 
proportion of larger stems; see Additional file 1: SI3) were broadly the inverse of those 
identified for the intercept. The gradient of the power law relationship was most affected by 
the natural logarithm of the population pressure with decay constant of 20.8 km (negative 
correlation; p-value < 0.001) and the mean burned area probability in the fourth quarter 
(decreasing by 1.0 for every 0.2 increase; p-value < 0.001). Thus, the proportion of large 
stems was greater in areas experiencing few disturbances from people or fire (Additional file 
3: Figure S2; Additional file 5: Figure S4; Additional file 1: Table S3). 

When investigating the most influential correlates of spatial differences in carbon storage and 
how these result from changes in either species composition affecting wood density (specific 
gravity) or the number of large trees present, we found that the final Tier 3 carbon storage 
estimates were positively correlated with both size-frequency distribution estimates (both 
intercept and gradient [p-values < 0.001]), and negatively correlated with WSG estimates (p- 
value < 0.001) and maximum height estimates (p-value < 0.001; Additional file 1: see SI4). 
All possible interactions were investigated and were significant (Adj R-sq = 0.35; p- values < 
0.001), however, the majority of the explanatory power lay within the second order 
interactions (Adj R-sq = 0.33; p-values < 0.001; Additional file 1: Table S5). Broadly, WSG 
and the proportion of larger stems had largest influence over the carbon storage estimate. 
Considering only second order interactions, in areas of low potential stem density, carbon 
storage is positively correlated with maximum canopy height (Additional file 6: Figure S5). 



However, the opposite correlation is observed in areas of higher stem density. Although 
similar interactions are observed between both size-frequency distribution estimates (gradient 
and intercept), the interaction between WSG and maximum canopy height is inverse, with 
carbon storage only showing positive correlations with maximum canopy height in areas of 
high WSG. Both size-frequency distribution estimates also interacted similarly with WSG, 
with both showing positive correlations with carbon storage in areas of low WSG, but 
negative correlations in areas of high WSG (Additional file 6: Figure S5). Finally carbon 
sequestration correlation values were positively correlated with carbon storage estimates (p-
value < 0.001), indicating that areas storing the most carbon are also those that are increasing 
in stock at the fastest rate. 

Discussion 

Tier 3 correlation-based method vs. Tier 1 and 2 methods 

Our estimates of 1.3 Pg C stored across the 33.9 million hectares is larger than most previous 
Tier 1 estimates [46-48], although below the most recently produced estimate [3] (Table 1). 
Underestimation of the amount of carbon stored in the EAM region in global analyses can be 
a result of their poor resolution and/or application of data from other regions which may 
differ systematically compared to East African forests, woodlands and savannas [42]. When 
separated by land cover category, our locally derived carbon estimates are comparable to 
those presented in other local [49-52] and global studies, the latter often containing little or 
no data from East Africa [3,4,46,47,53]. This suggests differences between our estimates and 
other studies have arisen because many previous studies mapped carbon storage at lower 
resolution [3,4,46,47,53]. When considering homogenous landscapes, scale effects are 
unlikely to cause a dramatic difference in carbon estimates. However, in highly fragmented 
and heterogeneous landscapes, such as East Africa, the effects of scale are likely to be 
substantial. Forest fragments, typically of high carbon storage, may be omitted at lower 
resolutions, being ‘replaced’ by more dominant, but low carbon, land cover categories (e.g. 
open woodland), resulting in underestimation of carbon storage. 

It must be noted that, the landscape-scale confidence intervals surrounding our Tier 3 
estimates are considerably wider than those around previous estimates [3,4,42,47,53]. This 
result is consistent with Hill et al (2013), who also showed increasing methodological 
sophistication does not necessarily result in reduced uncertainty, as is often assumed [54]. 
Confidence intervals derived from look-up table values may show a systematic bias. The 
ranges provided are an artefact of the study area, the number of land cover categories and the 
resolution, as when summed across a large number of pixels, pixel error is mostly negated as 
underestimates in one part of the landscape are counterbalanced by overestimates in other 
parts. The 95% CI developed from correlation equations are effectively based on numerous 
continuous variables, containing the uncertainty relating to anthropogenic, climatic and 
edaphic variables, thus have many thousands of possible combinations, severely limiting the 
ability of the ‘law of averages’ to act. Hence, the 95% CI presented in this investigation may 
better reflect that of the actual landscape, containing more variables that make-up the 
complex landscape heterogeneity (i.e. improved representativeness), although this is only true 
for those pixels estimated using the correlation equations (86% of the EAM but only 52% of 
the study area). Therefore, the look-up table 95% CI presented in Willcock et al (2012), and 
used in this study, may underestimate uncertainty [42]. Future studies should expand the 
existing plot network (Figure 1), enabling the correlation equations (and improved 95% CI) 



to be applied to the entire study area. This process has already begun under a new WWF-
REDD+ project (which focusses on better sampling the data-deficient land cover categories 
identified in this study [55]) and the National Forest Monitoring and Assessment 
(NAFORMA) project [56,57]. 

Links between carbon stock and influential variables 

The results presented here indicate that ALC storage in tree-dominated ecosystems is 
correlated with anthropogenic, climatic and edaphic variables. However, in all our models 
there is a large amount of unexplained variation (R-squared values for our correlation models 
vary between 0.18 and 0.41). This is likely to be due to three main reasons (Additional file 1: 
SI6). Firstly, although we used the highest resolution datasets that are freely available, several 
of the associated variables are of relatively poor resolution across the EAM (including; wind, 
light and soil nutrient variables [Additional file 1: Table S6]). This is particularly important 
here as low resolution GIS data is unlikely to correlate well with the response variables from 
our plot network as many plots (with high variance [58]) may fall within a single cell [59]. 
Thus, our study may be biased against retaining low resolution explanatory variables in our 
models. Secondly, contemporary forest characteristics are the result of growth, recruitment 
and mortality over many years. It is difficult to obtain data on historical variables and yet 
these could have had a significant impact on present day carbon storage and other forest 
characteristics [60]. Thirdly, present day information is also lacking, for example datasets 
describing physical soil properties in the study area are unavailable. Thus, future work is 
needed to develop additional high resolution GIS data, particularly for historic time periods. 

Of the variance explained in our forward and backward models, direct anthropogenic factors 
are the most influential explanatory variables (as noted by the largest coefficient of 
explanatory variables on the response variable, in contrast to those [e.g. temperature] with 
smaller p-values but also smaller influence [Table 3]) and so are the focus of our remaining 
discussion (see Additional file 1: SI5 for discussion of climatic and edaphic variables). 

Within our study area, people are clustered around high carbon areas (Figure 4). We suggest 
this could be due to these areas having favourable climatic conditions with more moisture for 
plant (and thus crop) growth. Further, the incidence of malaria is lower at high elevations 
[61], making these locations more habitable for human populations. Thus there is a peak in 
population density near the base of high-carbon montane forests [40]. Our interpretation that 
it is the landscape suitability driving human population density is consistent with the 
observation that when individual localities are followed over time, degradation at the local 
level caused by the population is evident [62,63]. This emphasises that our results are not 
proof of causation and that the drivers may be a correlate of the explanatory variables 
retained in our models (Additional file 1: SI6). Our results also show a decrease in carbon 
storage in previously logged areas and in areas nearer the commercial capital, Dar es Salaam. 
This confirms previous reports that areas near the capital have lower biomass due to the local 
demand of low grade timber by the city, as well as international demand for high grade 
timber via the city’s port [62]; emphasising the connections between the rural and urban 
landscape, and how the sphere of urban influence drives change in rural ecosystems. Future 
investigations should use simulation modelling and direct experimentation to identify if the 
influential variables highlighted here can be confirmed as drivers of carbon storage and 
sequestration, providing a deeper understanding of the process-based relationships. 



The decrease in carbon storage as a result of logging (51-77% of the ALC is retained) is of 
similar magnitude to other reported estimates [64]. However, the historical logging data we 
utilised was based on expert opinion (Additional file 1: Table S6) so, given its importance, 
further work developing and evaluating historical variables is needed (Additional file 1: 
Table S7). We observe a comparable decrease due to differing governance. Land under 
national control holds between 40% and 65% of the ALC stored in areas under decentralised 
governance. This perhaps indicates that decentralisation of management (e.g. participatory 
and community led forestry) is successful in our study area [37,65]. However, it is not 
possible to prove causation within the framework of this study. Many locally managed forests 
are located in the south-east of our study area within an area of naturally high carbon storage, 
whereas land under national control covers much larger areas, including the dry, carbon-poor 
east. Hence, our finding that carbon storage is higher in areas under decentralised control may 
be an artefact of the differing areas where this type of land management occurs. Further 
studies monitoring change in carbon storage over time under the two different governance 
regimes would enable the effect of land management to be determined. 

The overall effects on carbon storage are a result of many changes in forest characteristics. 
Both WSG and the proportion of larger stems decrease with increasing anthropogenic 
disturbance, however, stem density (≥ = 10 cm DBH) increases. Anthropogenic disturbance, 
for example logging, is often a commercial activity and results in the preferential removal of 
the largest, most valuable stems [62]. The more open canopy, following stem removal, would 
result in increased recruitment from young forest trees [66], leading to the high numbers of 
small stems observed. However, the opposite would be expected in woodlands and savannas, 
with more open canopies resulting in more grass, high fire intensity and so less recruitment 
[67,68]. Our results highlight how influential the negative effect of people on tropical forest 
carbon storage can be. This assertion is supported by data from across the tropics [69-71]. 
The significant impact of anthropogenic activities implies that REDD+ could, at the local 
scale, have significant positive impacts on carbon storage. However, careful policy designs to 
limit leakage of deforestation and encourage the involvement of the local population are 
needed to ensure REDD+ schemes achieve their carbon storage and sequestration aims [72]. 

Like carbon storage and its components, carbon sequestration is also correlated with 
anthropogenic, climatic and edaphic variables. We estimate that some localities (for example 
the Udzungwa Mountains National Park; Figure 4) provide a carbon sink of comparable per-
area magnitude to modelled estimates in East Africa [73] and to that observed over recent 
decades in structurally intact African forest [7]. However, many areas of forest and woodland 
within the study area experience a high level of degradation and disturbance, and so are net 
sources. Here, we have shown that anthropogenic disturbance is a key determinant of the 
trend in carbon storage over time in eastern Tanzania. Important locations of high carbon 
losses are the Pare and Usambara mountains (Table 5), which historically have seen the 
highest rates of degradation and disturbance [74]. The national population of Tanzania is 
increasing [75] and this may increase the pressure on tree-dominated ecosystems which could 
result in the study area becoming a significant source of carbon in the future. Furthermore, 
the effect of increase in anthropogenic pressures could be compounded by potential decrease 
in carbon storage as a result of increasing temperatures [76,77] and changes in soil nutrients 
(see Additional file 1: SI5). However, these future effects could be complicated by increasing 
levels of atmospheric CO2, varying effectiveness of legally protected areas and shifting 
consumption patterns. 



Table 5 Carbon stored and sequestered across the individual mountain blocks of the 
EAM range (the total is denoted in bold) 

Eastern Arc Mountain 
Block [40] 

Area, km2 Aboveground live carbon storage, 
Tg 

Mean carbon sequestration, 
Mg ha-1 yr -1 

 Tier 3 Willcock et al (2012) - 
Original Tier 2  [42] 

North Pare 510 1.93 2.38 2.60 
South Pare 2,327 8.96 9.59 2.41 
West Usambara 2,945 13.52 15.96 3.64 
East Usambara 1,145 5.91 7.63 2.79 
Nguu 1,562 9.34 12.71 1.89 
Nguru 2,565 15.11 18.86 1.79 
Ukaguru 3,243 13.39 20.63 1.42 
Uluguru 3,057 15.92 13.91 1.35 
Rubeho 7,984 36.84 40.96 1.06 
Malundwe 33 0.29 0.29 1.80 
Udzungwa 22,788 101.73 104.05 1.01 
Mahenge 2,606 23.58 12.08 0.19 
Total 50,765 246.53 259.06 1.19 

Conclusions 

Our results show that the amount of carbon stored in forests across 33.9 million ha of the 
Eastern Arc Mountains of Tanzania is considerable: 1.32 (0.89 to 3.16) Pg. Our estimate is 
significantly higher than most previous estimates. However, our more sophisticated method 
also has higher uncertainty, implying that other methods may substantially underestimate the 
uncertainty involved. Within the tree-dominated land cover categories, historical logging is 
the most influential direct anthropogenic factor, while the mean number of dry months is the 
most influential environmental factor, with an order of magnitude less impact on carbon 
storage. We show that WSG, size-frequency distribution variables and height variables are all 
important in determining carbon storage. Our estimates indicate that, between 2004 and 2008, 
tree-dominated communities across the study areas showed no significant change, however 
some areas were identified as large sinks (0.8% of the study area) and others large sources 
(1.4% of the study area), showing the importance of taking a landscape scale approach. The 
carbon maps produced and statistical relationships documented can assist policy-makers in 
designing policies to maintain and enhance carbon storage for climate mitigation and other 
ecosystem services. 

Method 

We collated data from 2,462 tree inventory plots within our study area (see Additional file 1: 
SI3), then applied a quality control and standardisation protocol. This consists of two main 
steps: (1) Metadata quality control; and (2) Measurement bias detection. 

Firstly, all plots lacking a recorded spatial location and a fixed area were discarded (770 
plots). Plots where one or more diameter at breast height (DBH) data were known to be 
missing were also excluded (7 plots). Furthermore, plots smaller than 0.025 ha (16 plots) 
were deemed to produce unreliable carbon estimates so also removed from the dataset. 



Secondly, to assess possible measurement bias, i.e. not measuring over buttresses and so 
overestimating biomass [78], the remaining plots were grouped by the lead field researcher. 
Size-frequency distributions, using 10 cm size classes, were created for each of these groups. 
Forest size-frequency distributions are suggested to conform to the -2 power law based on 
metabolic scaling [79]. Although it has been argued that this rule is not globally applicable 
[80], many studies accept this as a theoretical maximum value for the abundance of large 
stems [81]. Thus, researchers with many plots above this maximum value likely measured 
stems around buttresses and so were removed (1 researcher, 100 Plots). 

The quality control and standardisation procedure resulted in a dataset of 1,611 tree inventory 
plots (median 0.1 ha, mean 0.1 ha, mode 0.1 ha [43 plots with multiple censuses; median 0.1 
ha, mean 0.5 ha, mode 1.0 ha]; Figure 1; see Additional file 1: SI3 for a further information) 
from which we calculated plot-level stand structure indices and aboveground carbon storage 
per unit area (see Additional file 1: SI2 for full details). We obtained the exponent and 
intercept of the population size-frequency distribution using the power law fit for each plot 
using the log-log transformation method. Whereby, for each plot, we created 10 cm bin size-
frequency distributions based on DBH, and a linear model of the logarithm of frequency 
against the logarithm of the size class was fitted. Whilst not as accurate as the maximum 
likelihood estimation method, our simpler method is more stable for many of our plots, 
providing both the intercept and slope indicators of population structure [82]. 

We obtained WSG data via the phylogenetic information provided by our tree inventory 
plots. We used a global wood density database to extract species average WSG [83]. This 
procedure provided over 32,000 trees with WSG data. When this was not possible we 
adopted a hierarchical approach, first applying the appropriate genus average if available 
(~14,000 trees) before considering family average (~9,500 trees), plot average (~4,500 trees) 
and dataset average (~80 trees) in turn [84]. Including WSG as an additional parameter in 
allometric equations reduces the biomass estimation error [49,85,86]. 

In addition, we estimated plot biomass using moist forest tree allometry [86] based on 
measurements of DBH from our tree inventory plots, WSG (as described above) and height 
data (derived from our dataset using the best fit DBH-height equation form [Equation 5.1; see 
Additional file 1: SI4], if not measured in the tree inventory plots). Finally, carbon was 
assumed to be 50% of biomass [7]. 

For a smaller number of plots, multiple measurements were available over time (n = 43; mean 
plot size = 0.5 ha; mean measurement period = 3.9 years). We calculated changes in carbon 
storage rates by dividing the difference in carbon storage estimates between censuses by the 
number of years separating them. 

For our 1,611 geo-referenced tree inventory plots, we obtained further information on 
variables falling into five broad categories; anthropogenic, climatic, geographic, edaphic, and 
pyrologic (median resolution 1.0 ha, mean resolution 22.0 ha, mode resolution 1.0 ha; 
Additional file 1: Table S6). Anthropogenic data, further divided into six subcategories, were 
obtained: (1) population pressure variables (n = 14 related variables) were obtained from 
Platts (2012) [87] (see Additional file 1: SI7); (2) Dar es Salaam related variables (n = 3; e.g. 
distance to Dar es Salaam), (3) market town related variables (n = 3; e.g. distance to market 
towns), and (4) infrastructure related variables (n = 2; e.g. distance to roads) were derived 
from available topographic maps; (5) historical logging (n = 1) from Swetnam et al (2011) 
[88]; and (6) governance (n = 1) from the World Database on Protected Areas [89]. Climate 



data were divided into three subcategories (precipitation [n = 2; maximum mean cumulative 
water deficit and mean number of dry months annually], temperature [n = 4; mean annual 
temperature, mean annual minimum monthly temperature, mean annual monthly maximum 
temperature, and mean annual monthly temperature range] and wind speed [n = 1]) and were 
derived from the Tropical Rainfall Measuring Mission [90,91], WorldClim [92,93], and 
United States National Aeronautics and Space Administration Surface meteorology and Solar 
Energy [94] datasets. Similarly, geographic data have two variables (aspect [n = 1] and 
incoming solar radiation [n = 1]) derived from Shuttle Radar Topography Mission [93] and 
National Renewable Energy Laboratory [95,96] datasets respectively. Lastly, we extracted 
edaphic data (n = 6) from the International Soil Reference and Information Centre database 
[97,98] and fire-related variables (n = 5) derived from MODIS images [99]. 

We then correlated these variables with carbon storage, and following this, its components: 
WSG, the intercept of the power law relationship, and the gradient of the power law 
relationship, in each case using general linear models (see Additional file 1: SI2-5). No 
transformations were required to ensure a normal distribution when correlating either WSG, 
the intercept of the power law relationship or the gradient of the power law relationship with 
the individual variables. However, carbon storage estimates required a square root 
transformation to ensure a normal distribution within the general linear models (normality 
was confirmed using the Shapiro-Wilk test; p-value > 0.05). In all models, plots were 
weighted by the square root of their area as confidence in biomass estimation increases with 
the area surveyed [100,101]. Landscape scale spatial autocorrelation was accounted for by 
including spatial terms (latitude, longitude and the interactions between them) in the model 
(Additional file 1: Table S6) [102]. The numerous possible interactions were excluded from 
the models, as these were found to add very little explanatory power to the models, only 
increasing R-squared values by ~0.001 with the addition of each interaction term. All 
analyses were performed using R 2.12.1 [103] and mapped in ArcGIS v9.3.1 [104]. 

When assessing carbon sequestration (n = 43) fewer degrees of freedom were available, 
therefore explanatory variables need to be grouped. Therefore, we conducted a principle 
components (PC) analysis, obtaining five PC which explained >90% of the cumulative 
variance of the individual influential variables (Additional file 1: Table S4). Then, 
covariation of PC with carbon sequestration was assessed instead of the individual influential 
variables. Carbon sequestration estimates required a cube-root transformation to ensure a 
normal distribution within the general linear models (confirmed using the Shapiro-Wilk test; 
p-value > 0.05). This enabled the effect of multiple variables to be examined even with this 
limited dataset. PC analysis of the variables was performed on the scaled data using the 
prcomp package [105] within R 2.12.1 [103]. All other aspects of the model (weighting and 
spatial autocorrelation) were performed identically to the models for carbon storage and its 
components. 

The most appropriate model was chosen using forward and backward stepwise selection. 
Forward models are more useful for inferring causal relationships [43] and so were 
preferentially used to infer the influential variables of carbon storage and sequestration. 
However, averaging forward–backwards and backward–forwards predictions outperforms 
conventional selection procedures [43] and so both methods were used when estimating the 
spatial distributions within the study area. Akaike information criterion (AIC) was used to 
reduce/expand the models, with variable selection occurring when the variable reduced the 
mean squared error (MSE) under ten-fold cross validation [106]. Unlike model selection 
using R-squared, which neglects the principles of parsimony, AIC considers both model fit 



and complexity, resulting in better predictions and allowing inferences to be made from 
multiple models [107]. Model selection continued until the addition/removal of further 
variables able to reduce cross validation MSE no longer increased AIC, thereby producing 
the best-fit model with the lowest prediction error [43]. 

Within each category (anthropogenic, climatic, geographic, edaphic, and pyrologic), some 
variables were highly correlated (Additional file 1: Table S7) and this may confound the 
stepwise procedure as each variable does not carry enough distinct information [108]. For 
example, all temperature related variables (Additional file 1: Table S7) were correlated (R-
squared > 0.6). However, it is unclear which correlated best with the variables of interest, e.g. 
carbon storage and sequestration. Many studies include mean annual temperature in biomass 
models [77,109], but theory suggests that it may be the temperature range driving this 
relationship as photosynthesis correlates with maximum temperatures, but respiration with 
minimum temperatures [76,110,111]. We found that, if we removed correlated variables prior 
to model selection, the final models were artefacts of the variables we had selected. For 
example, if we included mean annual temperature in the model, but not temperature range, 
then the significant correlations between mean annual temperature and ALC storage were 
found. However, these correlations were insignificant if temperature range was added to the 
model, with the newly added variable showing a significant effect instead. In short, the 
resultant models were automatically biased towards a priori expectations. To avoid this bias, 
we devised a procedure by which the influential variables included in model selection were 
selected by their ability to explain variation within the data of interest (e.g. carbon storage). 
All variables (describe above) were included in model selection. Once this had run to 
completion the model was assessed. The subcategory with the most correlated variables 
retained within the model was selected and all but the most influential, significant variable 
were removed. For example, if all four temperature-related variables were included in the 
initial model and this was the largest group of variables then this group would be selected. 
Then, if mean annual temperature was the most influential and significant temperature-related 
variable, all other temperature-related variables would be excluded in the next round of 
model selection. Thus, stepwise model selection was then repeated for all remaining 
variables. This process was repeated until no highly correlated variables remained within the 
model produced. 

Since only landscape-scale variation was accounted for by the spatial terms already included 
in the model (latitude, longitude and the interactions between them; Table 1; Additional file 
1: Table S6), it was necessary to investigate the effect of local-scale (<10 km2) spatial 
autocorrelation [102]. To do this, the separate forward and backward models, containing no 
highly correlated variables (produced above), were mapped. Then, the sum of the model 
estimates within the maps were extracted at 1, 3, 5, 7 and 10 km2 resolutions, and included as 
additional variables (representing local spatial autocorrelation terms) into the stepwise model 
selection process, which was re-run a final time [112]. However, in all cases, local spatial 
autocorrelation terms were rejected as they did not reduce cross validated MSE. 

Since it was not necessary to include local spatial autocorrelation terms in the models, the 
preliminary maps produced above could be regarded as final spatial representations of the ten 
best fit models, two (forward and backward) for each of the five variables of interest (carbon 
storage, carbon sequestration, WSG, the intercept of the power law relationship and the 
gradient of the power law relationship). Each pair of maps (forward and backward) were then 
combined into a single, final weighted mean estimate. The ratio of the relevant cross 
validated MSE of the forward and backward models was used to create the weighted mean, 



with the model showing lowest error receiving the highest weighting [43]. Thus, we 
ultimately produced five maps (from ten best fit models); one each for carbon storage, carbon 
sequestration, WSG, the intercept of the power law relationship, and the gradient of the 
power law relationship. As our carbon storage estimates were derived from data representing 
trees with a DBH greater than or equal to 10 cm, regionally estimates of ratios from Willcock 
et al (2012) were used to estimate the unmeasured component of ALC storage [42], this was 
summed with our modelled carbon storage estimate, providing an estimate of total ALC 
storage. 

Although the five maps produced covered the entire study area, we were concerned that 
extrapolating predictions beyond the range of observed predictor variables from our dataset 
could result in large, unquantifiable errors. Thus, we limited the models to localities where all 
the associate variables were within the range of that shown in our dataset, thus only 
interpolating within our correlation models for tree-dominated land cover categories. For any 
pixels outside the data range, look-up table methods were used in preference to the 
correlation model estimates. Thus, for every land cover in our study area containing trees 
(open woodland; closed woodland; forest mosaic; lowland forest; sub-montane forest; 
montane forest; and upper montane forest [41]) that fell within the limits of our dataset, the 
estimate of carbon storage derived from the correlation equations was used. For all other land 
cover categories, and for those localities for which predictor variables fell outside the ranges 
of values used in model construction, land cover based look-up table values from Willcock et 
al (2012) were used to estimate ALC storage [42]. In total, look-up table values were applied 
to 52% of the landscape, although this was predominantly to low carbon land cover 
categories, with 86% of the EAM (which hold the majority of the regions tropical forest 
[113]) estimated using the correlation approach described above. Estimates of WSG and 
population structure were only made for wooded land cover categories, with estimates for 
areas within our dataset range being derived from the relevant correlation equations and 
estimates for other areas coming from land cover based look-up table values derived from the 
median value of our WSG and population structure data (weighted by the square root of plot 
size and derived via sampling with replacement 10,000 times) for each land cover category 
(Additional file 1: Table S8). For carbon sequestration, again, estimates were only made for 
wooded land cover categories for those areas inside the range of our dataset estimates derived 
from the correlation equations were used. However, unlike carbon storage, WSG and 
population structure, for areas outside the range of our dataset, a land cover based look-up 
table was not used as several land cover categories were poorly represented due to the small 
sample size available (n = 43). Instead, for pixels outside the range of the correlation-derived 
carbon sequestration model (16% of pixels with wooded land cover), the median value of 
data from our recensused plots (again weighted by the square root of plot size and derived via 
sampling with replacement 10,000 times) was utilised. 

For every 1 ha pixel of each map derived from correlation equations, we produced 95% 
confidence intervals (CI). If the pixel estimate was derived from the general linear models, 
then the pixel 95% CI was calculated by adding and subtracting the square root of the cross 
validation MSE. For look-up table pixels the look up table 95% CI were used. The pixel 95% 
CI describes, for every pixel, the range we would expect each of our estimates to lie within. 
However, as we are also interested in estimating carbon storage and sequestration on a 
landscape scale, indications of uncertainty are also required at landscape-scale. Simply 
summing the pixel 95% CI to derive 95% CI of the overall landscape-scale estimates would 
incorrectly treat random error as a region-wide systematic bias. Thus, to derive 95% CI for 
landscape-scale estimates, we randomly allocated each pixel an estimate within the range 



dictated by its 95% pixel CI, and summed these values across the entire landscape. This 
process was performed 10,000 times and the median value and 95% CI (the 250th and 9,750th 
ranked values, which may not be equally distributed around the median) for aboveground 
carbon storage and sequestration in the study area were obtained. 

For the final model of carbon storage estimates, we investigated how the components of 
carbon storage (population structure, WSG and tree height) interacted to ultimately produce 
the ecosystem service of carbon storage. We obtained estimates of maximum canopy height 
from the best fit DBH-height equation [Equation 5.1; see Additional file 1: SI4], and 
combined this spatially with our correlation model derived estimates of WSG, the intercept of 
the power law relationship and gradient of the power law relationship. We then correlated 
these against our estimates of carbon storage, allowing all possible interactions, and selected 
the best-fit model (via AIC) using both forwards and backwards stepwise regression. 

Ethical approval for the above study was obtained from the Faculty of Environment Research 
Ethics Committee, in accordance with the University of Leeds research ethics policy. 
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Additional file 2: Figure S1 The spatial variation of WSG in tree-dominated land cover 
categories within the study area (a), with upper (b) and lower (c) pixel based 95% CI. See 
text for details on methods. 
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Additional file 3: Figure S2 The most influential, significant influential variables on WSG 
(a and b), the intercept of the power law relationship (c and d), and the gradient of the power 
law relationship (e and f). Dashed red lines indicate 95% CI. 

Additional_file_4 as DOC 
Additional file 4: Figure S3 The spatial variation in the intercept of the power law 
relationship (a proxy measure for potential stem density) in tree dominated land cover 
categories within the study area (a), with upper (b) and lower (c) pixel based 95% CI. See 
text for details on methods. 
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Additional file 5: Figure S4 The spatial variation in the gradient of the power law 
relationship (a proxy measure for the proportion of larger stems) in tree-dominated land cover 
categories within the study area (a), with upper (b) and lower (c) pixel based 95% CI. See 
text for details on methods. 
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Additional file 6: Figure S5 The 2nd order interactions relating my carbon storage 
derivatives (wood specific gravity, maximum canopy height, the intercept of the power law 
relationship, and the gradient of the power law relationship [shown here as WSG, height, 
intercept, and gradient respectively]) to aboveground live carbon storage. Dashed red lines 
indicate 95% CI. 
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Additional file 7: Figure S6 The effect of MAT on tree height for a range of DBH. The data 
(points) correspond to DBH ranges whereas the Gompertz model fits (solid lines) illustrate 
the relationship for mid-point of this range only. Dotted lines represent the 95CI of the model 
fits. 
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