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Abstract

Background

The carbon stored in vegetation varies across tropical landscapés dummplex mix
climatic and edaphic variables, as well as direct human inteovsnsiuch as deforestatipn
and forest degradation. Mapping and monitoring this variation is easehtpolicy
developments such as REDD+ (Reducing Emissions from Deforestatidn Forest
Degradation) are to be known to have succeeded or failed.

Results

We produce a map of carbon storage across the watershed ofnrenida Eastern Aifc
Mountains (33.9 million ha) using 1,611 forest inventory plots, and correlatidgthy w
associated climate, soil and disturbance data. As expected, tropéestl stores more carbpn

per hectare (182 Mg C fathan woody savanna (51 Mg ChaHowever, woody savannalis
the largest aggregate carbon store, with 0.49 Pg C over 9.6 million hestiMate the whole
landscape stores 1.3 Pg C, significantly higher than most previbomtes for the region.
The 95% Confidence Interval for this method (0.9 to 3.2 Pg C) isrltrge simpler look-up
table methods (1.5 to 1.6 Pg C), suggesting simpler methods may tintkiessincertainty.
Using a small number of inventory plots with two censuses 43) to assess changes in
carbon storage, and applying the same mapping procedures, we foundkbatstarage in
the tree-dominated ecosystems has decreased, though not siggif@aatmean rate of 1.47
Mg C ha' yr! (c. 2% of the stocks of carbon per year).




Conclusions

The most influential variables on carbon storage in the regiom#reopogenic, particularly
historical logging, as noted by the largest coefficient of egitary variable on the resporjse
variable. Of the non-anthropogenic factors, a negative correlatiorawittmperature and|a
positive correlation with water availability dominate, having $engd-values than historical
logging but also smaller influence. High carbon storage is tfpifaund far from the
commercial capital, in locations with a low monthly tempermtange, without a strong dry
season, and in areas that have not suffered from historicahtpgbe results imply that
policy interventions could retain carbon stored in vegetation and lskedgessfully slow gr

reverse carbon emissions.

Keywords

Eastern Arc Mountains; Tanzania; IPCC Tier 3; REDD+; Forest; Distaghdegradation;
Ecosystem service

Background

Tropical forests are globally significant ecosystems; accogirfor ~50% of global forest
area [1], storing~ 45% of all carbon in terrestrial vegetation [2-4], maintaininghhig
biodiversity [5], and providing ecosystem services, such as timber, non-timksrfayducts
[6], and climate change mitigation [7,8]. However, within the lastdewades, vast areas of
tropical forests have been converted to other land-uses or degradezkalmple, between
1990 and 1997, 4.4-7.2 million hectares of humid tropical forest were convedkdyear
and an additional 1.6-3.0 million hectares of forest were visibly dedrfd]. This process
increased in the early 2000s, with an estimated 5.1-5.7 million Beotérhumid tropical
forest (and 3.5-4.7 million hectares of dry tropical forest) defedeger year between 2000
and 2005 [10]. The gradual and sustained reduction in forest quality andygbastresulted

in substantial emissions of G(11]. Globally, deforestation and forest degradation
accounted for 6-20% of anthropogenic GHG emissions in the 1990s an@@20k/[12-14].
Tropical regions make a substantial contribution to this, emitting 0.Pd.6 yi* between
1990 and 1999 [9,15-17] and 0.71.5 Pg C ketween 2000 and 2007 [13,16-18]. These
processes also impact the future potential of forests to renawkercfrom the atmosphere
[7,19,20].

Recently, attempts to mitigate increasing anthropogenig €issions through reducing
emissions from degradation and deforestation (REDD+) have beegatadti[21]. The
REDD+ programme is aimed at contributing to a reduction in greeahemsssions whilst
providing economic incentives for better management and protection eftsfofidis policy
has been widely welcomed and may provide a financial incentivigmificantly reduce
carbon emissions [22,23], although the equity and justice issues surrotimelimgpact on
local livelihoods are actively debated [24,25]. Key technical ssioe the successful
implementation of REDD+ include (but are not limited to) the sy of monitoring
systems, preventing leakage and establishing accurate histmgeslines. Thus, the success
of REDD+, in part, rests on robust scientific information on tlegmitude and extent of
carbon storage in tropical regions and how it changes over time [26].



The Intergovernmental Panel on Climate Change (IPCC) provideea tiTier” system
through which carbon stocks and emissions can be reported, each witbrandifével of
methodological complexity and accuracy. Tier 1 is the simplestadeusing global default
values obtained from the IPCC literature [27,28]. The intermediate2 level improves on
Tier 1 by using country specific data. Tier 3 is the most og®mpproach, using local forest
inventory data, focusing on the direct measurement of trees, répeatea time series [27-
29]. Here we develop a Tier 3 methodology for the Eastern Arc MiosnBAM) watershed
area.

The estimates become progressively more robust from Tier 1 te ®dinanges in two main
systematic errors [29]. The first, completeness, refereeantmber of IPCC carbon pools
that are included, with studies including all five pools (abovegroundliiter, coarse wood
debris [CWD], belowground and soil carbon) considered complete. The second,
representativeness, derives from the substantial natural vayiabitlie carbon stored across
landscapes, even within a biome or country [30]. The aboveground bionefsest within

a landscape may differ considerably from global default (Tier 1) valuesnrfeem country-
specific (Tier 2) values. For example, in the Peruvian Amazon,faatathe Los Amigos
Conservation Concession [31] were shown not to be representative sifs foedionally.
Nearby forests situated to the north and south of this local stedgsamated to contain 20-
35% less carbon per unit area [32], suggesting that Los Amigos r@atige Concession is
an area of locally high biomass. Since Tier 3 methods accoumafiation observed within
biomes and countries, the representativeness of the carbon estignatgker than those
associated with Tier 1 and 2 methodologies [32,33].

However, Tier 3 methods are more expensive [34,35] and some natiotacikn#ye capacity
to adopt such methods [36]. Whilst, in some cases, the capabilipptyp Ber 3 guidelines is
being rapidly developed, multi-temporal inventory data and data on b@tcerbon stock
changes can take several decades to accrue [37,38]. It exkpleat REDD+ requirements
will allow data provisions from several tiers in a single repétighly variable and/or
substantial carbon pools should be estimated using Tier 3 methodolagy fqeest
aboveground live carbon [ALC]), whilst Tier 1 or Tier 2 methodology toe sufficient for
smaller carbon pools (e.g. CWD) or carbon poor land cover categories (e.g. bare.ground)

In Tier 3 methods, in order to extrapolate from plot data, it isessy to develop

correlations with remotely sensed data to scale to the stedyoarcountry-wide estimates.
Generally, carbon storage is either estimated via statistocedlation with electromagnetic
properties, ground-truthed by volumetric measurements, such as diahdieast height

(DBH), which are converted to biomass estimates using allomemations. A variety of

remotely sensed data sources have been employed for carbon mappitgsendan be

aggregated into four groups: photographic imagery, RADAR, LIDAR, and ancill
geographic information systems (GIS) data (see Additionallfil8I1 for an evaluation of
each method). Here, we use ancillary GIS data as such datdhhesemain advantages: 1)
wide availability, often free of charge; 2) a suitable resmiuie.g. 90 m [39]); and 3)

correlations with these ancillary GIS data may indicate kvliariables directly affect carbon
storage. Developing an understanding of how these variables infloarmn storage is vital

for accurate scenarios of future emissions.

Here, we correlate carbon storage estimates from treetoryeplots 6 = 1,611, median size
= 0.1 ha) with data on climatic (e.g. temperature, precipitationsalad radiation), edaphic
(e.g. soil water holding capacity and soil fertility) and proxyialdes for direct human



interventions (e.g. governance type, distance from the main economigndecentres,
population pressure, and historical logging), and variables that deoiveclimate-human
interactions (e.g. burnt area index) for the Tanzanian waterslied Bastern Arc Mountains
(hereafter, EAM [40]), which covers 33.9 million ha (Figure 1; seetBam et al (2011) [41]
for further details). We develop Tier 3 type correlation equatito estimate the total ALC
stored across the forested and wooded land cover categories, aneas®ainon previous
Tier 2 estimates for the region presented in Willcock e2@ll?) [42]. Additionally, we
investigate the most influential correlates of spatial dffiees in carbon storage and how
these result from changes in either species composition iaffesod density (specific
gravity) or the number of large trees present. Lastly, alsmmalmber of inventory plots (n =
43, median size 0.1 ha) have two censuses, and by applying the samegnpappedures,
we assess changes in carbon storage over time, providing -@rdiest estimate of
sequestration across the region.

Figure 1 The Eastern Arc Mountains of Tanzania and Kenyd40]. The study area is the
Eastern Arc watershed in Tanzania [41].

Results

Carbon stocks

Utilising 1,611 plots and scaling to the 33.9 million ha study areastimate that 1.32 (95%
confidence interval [CI] ranges from 0.89 to 3.16) Pg C was stort#teiaboveground live
vegetation in the year 2000 (Figure 2; Table 1). Woodland and bushland codtnimgeto

the amount of stored aboveground live carbon (ALC) in the study regiih, open
woodland storing the most ALC (0.49 [0.47 to 1.60] Pg C over 9.6 million dié&wied by
bushland (0.29 [0.15 to 0.51] Pg C over 5.0 million ha) and closed woodland (0.18 [0.13 to
0.61] Pg C over 1.8 million ha).

Figure 2 Aboveground live carbon storage in the study area (a), with upper (b) and
lower (c) pixel based 95% Cl.See text for details on methods.




Table 1 Aboveground live carbon stored within the study area for the year 2000, estimated Ibhis and previous studies

Study Aboveground live
carbon, Pg
(95% ClI range)

Methodology

Resolution (nf) Disturbance included?

Present study* — Tier 3 1.32 (0.89-3.16) Corretagguations derived using remotely100

sensed influential variables.

Willcock et al (2012)* — Original Tier 1.58 (1.56-1.60) Land cover based look-up table. 0 10
2[42]

Willcock et al (2012) — Harmonised 1.64 (1.52-1.76) Land cover based look-up table. 0 10
Tier 2 [42]

Baccini et al (2012) — Tier 1 [3] 2.03 Derived frafODIS and GLAS LiDAR data. 500
Saatchi et al (2011) — Tier 1 [4] 0.83 Derived frdf@®DIS, SRTM, QSCAT and 1000

GLAS LiDAR.
Hurtt et al (2006) HYDE-SAGE — Tie0.63 Modelled from the Miami LU ecosystem  ~110,000
1[46] model with cropland data from the Centre for
Sustainability and the Global Environment.
Hurtt et al (2006) HYDE — Tier 1 [46] 0.41 Modellédm the Miami LU ecosystem
model.

~110,000

Baccini et al (2008) — Tier 1 [47] 0.34 DerivedrfiaMODIS and GLAS LiDAR data. 1000

Anthropogenic variables represent humaryes
disturbance. Natural disturbance variables
also included.
Only where land cover categories are Yes
identified as disturbed (e.g. cropland
mosaics).
Only where land cover categories are Yes
identified as disturbed (e.g. cropland
mosaics).

Partially includdisturbance through Yes
impacts on canopy heights.

Partially includes disturbance through  No
impacts on canopy heights.

Contains simple submodels of natural plaxb
mortality, disturbance from fire, and organic
matter decomposition, as well as wood
harvesting.

Contains simple submodels of natural plaxb
mortality, disturbance from fire, and organic
matter decomposition, as well as wood
harvesting.

Partially inclgdéisturbance through No
impacts on canopy heights.

* This study and Willcock et al (2012) are not independent as thejeaireed from the same underlying data and utilise the same lo@blgp t

values.

Tanzanian on-
the-ground data?



Best estimate values from our methodology, per unit area, inl@ad cover class, are given
in Table 2. Forest contained the greatest ALC per unit areh, highest values in sub-
montane forest (189 [95 to 588] Mg Hafollowed by lowland (182 [152- to 360] Mg ha
upper montane (166 [69 to 533] Mg Hamontane (130 [62 to 702] Mg T and forest
mosaic (121 [55 to 485] Mg Hx Woodlands held less ALC than forests, with closed
woodland storing 100 (70 to 331) Mghand open woodland storing 51 (38 to 165) Mg ha

(Table 2), but more than the landscape average of 39 (26 to 93) Mg ha

Table 2The mean (and 95% CI) estimates of forest characteristics investigateal this
study (carbon storage, carbon sequestration, WSG, the intercept from the pewlaw
relationship and the gradient from the power law relationship) separatedby land cover

category
Land cover categor [41] Carbon storage Carbon sequestration WSG The intercept from the The gradient from the
(Mg hal) (Mg hatyr?) (g cm®) power law relationship power law relationship
Lowland Forest (<1000 m) 182 (152 to 360) -0.91 (-7.08 to 4.29) 0.60 (069.60) 6.01 (2.94 t0 5.17) -0.93 (-1.04 to -0.82)
Sub-montane forest (1000-1500 myL89 (95 to 588) -2.02 (-11.06 to 1.29) 0.58 (05D.68) 5.95 (3.68 to 8.23) -1.31 (-1.48 to -1.14)
Montane Forest (1500-2000 m) 130 (62 to 702) -2.03 (-11.85t0 1.07) 0.60 (059.60) 6.95 (3.51 to 10.39) -1.57 (-1.82 to -1.32)
Upper-montane forest (>2000 m) 166 (69 to 533) -2.08 (-10.49 to 1.23) 0.60 (058.60) 7.03 (4.60 to 9.45) -1.61 (-1.93 to -1.26)
Forest mosaic 121 (55t0 485) -1.18 (-6.69 to 2.92) 0.56 (0.56.66) 9.22 (6.98 to 11.46) -1.90 (-1.99 to -1.81)
Closed Woodland 100 (70 to 331) -1.24 (-7.91 to 2.63) 0.64 (06..86) 6.67 (4.95 to 8.60) -1.55 (-1.85 to -1.30)
Open Woodland 51 (38t0 165)  -1.49 (-7.53 to 2.05) 0.61 (0.5962) 6.38 (4.88t0 7.82) -1.45 (-1.70 to -1.19)

Our sequestration model suggests that the landscape may be losing.@.0%0(0.26) Pg C
yr! (mean net flux to atmosphere of 1.47 [-2.13 to 7.75] Mg Eynd). Of the 12.3 million
ha of tree-dominated land in our study area, only 1.4% (0.17 milliorsh@ys a carbon
decrease over the entire 95% CI range and only 0.8% (0.10 million defjnite carbon
increase (Figure 3). The locations showing net carbon uptake arkeirJdzungwa
mountains, while the locations with net reductions in carbon storagmainly in the Pare
and Usambara mountains.

Figure 3 Aboveground live carbon sequestration in tree-dominated land cover
categories within the study area (a), with upper (b) and lower (c) pixel bad 95% CI.
See text for details on methods.

Links between carbon stock and influential variabls

The variables that influence carbon storage and sequestration mayfebedi from
relationships within the correlation models. Forward selectionteeané presented in the
following paragraphs as these best indicate causal relatiorjdBig%]. In general, backward
models were in close agreement with forward models (Tables 3l;aAdditional file 1:
Tables S1-S3).



Table 3The coefficients and associated p-values of the variables correlated with
aboveground carbon storage using both forward and backward selection procedwge

Variable (where appropriate, units are given in brackets) Group Forward Backward

Coefficient p-value Coefficient  p-value

(Intercept)

n/a -1.21E+ 03 3.14E-03 -2.80E+00 7.55E-01

Natural logarithm of the population pressure with decay Anthropogenic 1.06E+00 1.06E-05 1.42E +00 2.PBE-
constant of 12.5 km

Natural logarithm of the population pressure with decay

constant of 16.7 km
Distance to roads(km) Anthropogenic 1.15E-04 1.09E-03 1.78E-04 E-80
Historical logging — Partially logged(no logging/partially ~ Anthropogenic -2.10E +00 1.09E-03 -3.83E+00 E@O7

Anthropogenic n/a n/a 1.42E + 00 2.27E-06

logged)

Cost distance to Dar es Salaam Anthropogenic 3.41E-05 2.00E-03 2.58E + 00 5.46E-03
Natural logarithm of the cost distance to market tavns Anthropogenic -6.05E-01 5.24E-02 -9.85E-01 1.89E-02
Governance — localnational/local/joint/unknown) Anthropogenic 42400 9.29E-03 nla n/a
Governance — national(national/local/joint/unknown) Anthropogenic -70B93 9.78E-01 nl/a n/a
Governance — unknown(national/local/joint/unknown) Anthropogenic 6.26E 7.10E-01 nl/a n/a

Mean annual monthly temperature range(°C) Climatic -9.79E-01 2.00E-16 -1.15E+00 1.9BF
Mean annual minimum monthly temperature (°C) Climatic n/a n/a 1.09E+00  3.07E-16
Mean annual maximum monthly temperature(°C) Climatic n/a n/a -1.15E + 00 1.98E-13
Mean number of dry months annually Climatic -2.28E-01 2.57E-02 -3.09E-01 5.58E-03
Total available water capacity of the soi(vol.%, Edaphic -3.75E-01 1.16E-05 -8.59E-01 3.05E-05
-33 to -1500kPA conforming to USDA standards)

Total nitrogen content of the soil(g kg") Edaphic n/a n/a -4.13E-01 2.50E-03
Total carbon content of the soil(g kg% Edaphic n/a n/a 6.18E + 00 1.15E-03
pH of the soil (pH) Edaphic n/a n/a 1.73E + 00 2.96E-02
Spatial autocorrelation term 5 Spatial 6.45E +01 3.15E-03 6.60E + 00 1.18E-01
Spatial autocorrelation term 7 Spatial -8.48E-01 3.57E-03 -1.71E-01 1.45E-01
Spatial autocorrelation term 4 Spatial n/a n/a 6.60E + 00 1.18E-01
Spatial autocorrelation term 3 Spatial n/a n/a -1.71E-01 1.45E-01

Table 4 The coefficients and associated p-values of the variables correlated with
aboveground carbon sequestration

Variable Coefficient p-value
(Intercept) 0.032 0.890
PC1 -0.112 0.006
PC3 -0.255 0.010
PC5 -0.412 0.012

Carbon storage (adjusted R-squared [Adj R-sq] = 0.18) is correlatéi/gdgswith the
natural logarithm of the population pressure with decay constant of 12.5 km (p-value < 0.001)
and increased by 1 Mg fdor every 8700 km from a road (p-value < 0.010), and every
30,000 units in the cost distance to Dar es Salaam (p-value < 0.01®pnCstorage
decreased by 1 Mg Hdor every 1°C increase in mean annual monthly temperature ange (
value < 0.001), every 2.7% rise in the total available water dgpaicthe soil (p-value <
0.001), and every 4.4 month increase in the mean number of dry months a(pwallye <
0.050). Carbon storage was 2.1 Mg'Hawer in areas where historical logging was present
(p-value < 0.010), and 4.2 Mg hahigher in areas under the control of local
communities/governments (p-value < 0.010). Thus, carbon storage is ragbas far from
the commercial capital, with a low monthly temperature rangowi a dry season, that



have not suffered from historical logging and are under local contiylgmvernment control
(Figure 4; Table 3).

Figure 4 The modelled effect of most influential, significant anthropogemi (a, b, and c),
climatic (d and e) and edaphic (f) variables of aboveground live carbon storageashed
red lines indicate the modelled 95% CI. The data is indicated by black lines abavaxike

The rate of carbon sequestration correlated with three principalponent (PC) axes
(presented in order of influence; Adj R-sq = 0.41). Carbon sequestraismegatively
correlated with the soil fertility axis (PC5; p-value < 0.050rmwer temperatures and longer
dry seasons (PC3; p-value < 0.050), and with increased anthropogenibadiseu(PC1; p-
value < 0.010). Thus, carbon sequestration was highest in less deggile with little or no
drought and little anthropogenic disturbance (Table 4).

Wood specific gravity (WSG; Adj R-sq = 0.28; see Additional fil&SI2) was most strongly
affected by the annual mean burned area probability (increbgigg cn® for every 0.04
increase; p-value < 0.001) and the total available water itapéche soil (decreasing by 1 g
cm?® for every 82.0% increase; p-value < 0.001). Thus, WSG is higher in breas with
little available water (Additional file 2: Figure S1; Additiorfde 3: Figure S2; Additional
file 1: Table S1).

The intercept of the power law relationship (an indication of potestean density [see
Additional file 1: SI3]; Adj R-sg = 0.30) was most affected bg ttatural logarithm of the
population pressure with decay constant of 12.5 km (positive correlatvalu@ < 0.001)
and the mean annual monthly temperature range (increasing by &xefg 1.2°C increase;
p-value < 0.001). Thus, the density of smaller stems increasesaswaite a high population
pressure and large temperature fluctuations (Additional fileigre S2; Additional file 4:
Figure S3; Additional file 1: Table S2).

Correlations identified for the gradient of the power law m@hship (an indication of the
proportion of larger stems; see Additional file 1. SI3) were diso#he inverse of those
identified for the intercept. The gradient of the power lawtigglahip was most affected by
the natural logarithm of the population pressure with decay constant ok0O(Begative

correlation; p-value < 0.001) and the mean burned area probability irouhh quarter

(decreasing by 1.0 for every 0.2 increase; p-value < 0.001). Thugprdpertion of large

stems was greater in areas experiencing few disturbammeeg&ople or fire (Additional file

3: Figure S2; Additional file 5: Figure S4; Additional file 1: Table S3).

When investigating the most influential correlates of spatiémifces in carbon storage and
how these result from changes in either species compositionraffeciod density (specific
gravity) or the number of large trees present, we found thairtakeTier 3 carbon storage
estimates were positively correlated with both size-frequetislyibution estimates (both
intercept and gradient [p-values < 0.001]), and negatively correlatedM$G estimates (p-
value < 0.001) and maximum height estimates (p-value < 0.001; Addifienat see Sli4).
All possible interactions were investigated and were signifiamit R-sq = 0.35; p- values <
0.001), however, the majority of the explanatory power lay within thenseworder
interactions (Adj R-sq = 0.33; p-values < 0.001; Additional file 1: T&Ae Broadly, WSG
and the proportion of larger stems had largest influence over the cstidrage estimate.
Considering only second order interactions, in areas of low potetdral density, carbon
storage is positively correlated with maximum canopy height (Aufdit file 6: Figure S5).



However, the opposite correlation is observed in areas of higherdspsity. Although
similar interactions are observed between both size-frequencpulisin estimates (gradient
and intercept), the interaction between WSG and maximum canopy eigiverse, with
carbon storage only showing positive correlations with maximum caneigit in areas of
high WSG. Both size-frequency distribution estimates also inegtagitmilarly with WSG,
with both showing positive correlations with carbon storage in aredeswofWSG, but
negative correlations in areas of high WSG (Additional file iGufe S5). Finally carbon
sequestration correlation values were positively correlatedcaitton storage estimates (p-
value < 0.001), indicating that areas storing the most carbortsarthase that are increasing
in stock at the fastest rate.

Discussion

Tier 3 correlation-based method vs. Tier 1 and 2 nibods

Our estimates of 1.3 Pg C stored across the 33.9 million hectdaegasthan most previous
Tier 1 estimates [46-48], although below the most recently prodwstedage [3] (Table 1).
Underestimation of the amount of carbon stored in the EAM region inlglabd/ses can be
a result of their poor resolution and/or application of data from o#gions which may
differ systematically compared to East African forests, wamdd and savannas [42]. When
separated by land cover category, our locally derived carbonagstinare comparable to
those presented in other local [49-52] and global studies, the |latterafhtaining little or
no data from East Africa [3,4,46,47,53]. This suggests differences hetweestimates and
other studies have arisen because many previous studies mapped taudhgs & lower
resolution [3,4,46,47,53]. When considering homogenous landscapes, scale aféects
unlikely to cause a dramatic difference in carbon estimatesetawin highly fragmented
and heterogeneous landscapes, such as East Africa, the effesttale are likely to be
substantial. Forest fragments, typically of high carbon storagg, beaomitted at lower
resolutions, being ‘replaced’ by more dominant, but low carbon, land categories (e.g.
open woodland), resulting in underestimation of carbon storage.

It must be noted that, the landscape-scale confidence intervatursding our Tier 3
estimates are considerably wider than those around previous testif@a,42,47,53]. This
result is consistent with Hill et al (2013), who also showed inorgasethodological
sophistication does not necessarily result in reduced uncertainiy,often assumed [54].
Confidence intervals derived from look-up table values may show anststebias. The
ranges provided are an artefact of the study area, the nafllaed cover categories and the
resolution, as when summed across a large number of pixelsepizels mostly negated as
underestimates in one part of the landscape are counterbalanced éstimates in other
parts. The 95% CI developed from correlation equations are gélychased on numerous
continuous variables, containing the uncertainty relating to anthropogammaatic and
edaphic variables, thus have many thousands of possible combinationslysiawding the
ability of the ‘law of averages’ to act. Hence, the 95% CI prieskin this investigation may
better reflect that of the actual landscape, containing mor@bles that make-up the
complex landscape heterogeneity (i.e. improved representativendss)ghlthis is only true
for those pixels estimated using the correlation equations (8Gke &AM but only 52% of
the study area). Therefore, the look-up table 95% CI presented lco®kilet al (2012), and
used in this study, may underestimate uncertainty [42]. Future stsidoedd expand the
existing plot network (Figure 1), enabling the correlation equatand improved 95% CI)



to be applied to the entire study area. This process has albegdy under a new WWF-
REDD+ project (which focusses on better sampling the data-gleffitand cover categories
identified in this study [55]) and the National Forest Monitoring akssessment
(NAFORMA) project [56,57].

Links between carbon stock and influential variables

The results presented here indicate that ALC storage indtmeéated ecosystems is
correlated with anthropogenic, climatic and edaphic variables. Howevall our models
there is a large amount of unexplained variation (R-squared valuesrfcorrelation models
vary between 0.18 and 0.41). This is likely to be due to three mamneeésdditional file 1:
SI6). Firstly, although we used the highest resolution datasets that raft@itable, several
of the associated variables are of relatively poor resolutionsatite€£AM (including; wind,
light and soil nutrient variables [Additional file 1: Table S6]hisTis particularly important
here as low resolution GIS data is unlikely to correlate wigh the response variables from
our plot network as many plots (with high variance [58]) may f#tiw a single cell [59].
Thus, our study may be biased against retaining low resolutionnexpig variables in our
models. Secondly, contemporary forest characteristics are the eégrowth, recruitment
and mortality over many years. It is difficult to obtain datahgstorical variables and yet
these could have had a significant impact on present day carbagestamd other forest
characteristics [60]. Thirdly, present day information is als&itgg for example datasets
describing physical soil properties in the study area are uabla Thus, future work is
needed to develop additional high resolution GIS data, particularly for histoegénods.

Of the variance explained in our forward and backward models, didobpaogenic factors

are the most influential explanatory variables (as noted bylahgest coefficient of

explanatory variables on the response variable, in contrabbse {e.g. temperature] with
smaller p-values but also smaller influence [Table 3]) and eséhar focus of our remaining
discussion (see Additional file 1: SI5 for discussion of climatic and edaphibhesja

Within our study area, people are clustered around high carbon(Bigae 4). We suggest
this could be due to these areas having favourable climatic condititmsiore moisture for
plant (and thus crop) growth. Further, the incidence of malaria is latveigh elevations
[61], making these locations more habitable for human populations. Thasighempeak in
population density near the base of high-carbon montane forests [40ht@upretation that
it is the landscape suitability driving human population density isistens with the
observation that when individual localities are followed over timgratkation at the local
level caused by the population is evident [62,63]. This emphasisesuthag¢sults are not
proof of causation and that the drivers may be a correlate oéxplkanatory variables
retained in our models (Additional file 1: SI6). Our results alsow a decrease in carbon
storage in previously logged areas and in areas nearer the coatroapital, Dar es Salaam.
This confirms previous reports that areas near the capitaldvaee biomass due to the local
demand of low grade timber by the city, as well as internatideadand for high grade
timber via the city’s port [62]; emphasising the connections betwbe rural and urban
landscape, and how the sphere of urban influence drives change incosydtems. Future
investigations should use simulation modelling and direct experimamtatiidentify if the
influential variables highlighted here can be confirmed as drigérsarbon storage and
sequestration, providing a deeper understanding of the process-based relationships



The decrease in carbon storage as a result of logging (51-77% AL@hes retained) is of
similar magnitude to other reported estimates [64]. However, #terical logging data we
utilised was based on expert opinion (Additional file 1: Table S6)igendts importance,
further work developing and evaluating historical variables is needddit{@nal file 1:
Table S7). We observe a comparable decrease due to differing gmesrhand under
national control holds between 40% and 65% of the ALC stored in areasdeugatralised
governance. This perhaps indicates that decentralisation of mamdg@e participatory
and community led forestry) is successful in our study area [37H&Bjever, it is not
possible to prove causation within the framework of this study. Maoally managed forests
are located in the south-east of our study area within an anedupélly high carbon storage,
whereas land under national control covers much larger areas, indhdidgy, carbon-poor
east. Hence, our finding that carbon storage is higher in areas under diseeht@itrol may
be an artefact of the differing areas where this typeand Inanagement occurs. Further
studies monitoring change in carbon storage over time under the fiexenl governance
regimes would enable the effect of land management to be determined.

The overall effects on carbon storage are a result of mamgebkan forest characteristics.
Both WSG and the proportion of larger stems decrease with inogeasithropogenic
disturbance, however, stem density= 10 cm DBH) increases. Anthropogenic disturbance,
for example logging, is often a commercial activity and tesualthe preferential removal of
the largest, most valuable stems [62]. The more open canopy, follsteimgremoval, would
result in increased recruitment from young forest trees [6@fihg to the high numbers of
small stems observed. However, the opposite would be expected in woaahansisvannas,
with more open canopies resulting in more grass, high fire inteasdyso less recruitment
[67,68]. Our results highlight how influential the negative effect aipfee on tropical forest
carbon storage can be. This assertion is supported by data frora g@dsopics [69-71].
The significant impact of anthropogenic activities implies theDR+ could, at the local
scale, have significant positive impacts on carbon storage. Hoveaveful policy designs to
limit leakage of deforestation and encourage the involvement ofotia¢ population are
needed to ensure REDD+ schemes achieve their carbon storage and sequestsafi@). a

Like carbon storage and its components, carbon sequestration is catstated with
anthropogenic, climatic and edaphic variables. We estimate thatIscalities (for example
the Udzungwa Mountains National Park; Figure 4) provide a carboroseikmparable per-
area magnitude to modelled estimates in East Africa [73] atldatoobserved over recent
decades in structurally intact African forest [7]. Howeveangnareas of forest and woodland
within the study area experience a high level of degradation andlbdiste, and so are net
sources. Here, we have shown that anthropogenic disturbance is a deyimsait of the
trend in carbon storage over time in eastern Tanzania. Importanibfscatf high carbon
losses are the Pare and Usambara mountains (Table 5), whichcdilistdrave seen the
highest rates of degradation and disturbance [74]. The national popwétitenzania is
increasing [75] and this may increase the pressure on tree-dechewsystems which could
result in the study area becoming a significant source of carbtireifuture. Furthermore,
the effect of increase in anthropogenic pressures could be compoyndetébtial decrease
in carbon storage as a result of increasing temperatures [78d thanges in soil nutrients
(see Additional file 1: SI5). However, these future effects coulcobeplicated by increasing
levels of atmospheric GO varying effectiveness of legally protected areas and dghiftin
consumption patterns.



Table 5Carbon stored and sequestered across the individual mountain blocks thfe
EAM range (the total is denoted in bold)
Eastern Arc Mountain Area, km? Aboveground live carbon storage, Mean carbon sequestration,
Block [40] Tg Mg hatyr
Tier 3 Willcock et al (2012) -
Original Tier 2 [42]

North Pare 510 1.93 2.38 2.60
South Pare 2,327 8.96 9.59 2.41
West Usambara 2,945 13.52 15.96 3.64
East Usambara 1,145 5.91 7.63 2.79
Nguu 1,562 9.34 12.71 1.89
Nguru 2,565 15.11 18.86 1.79
Ukaguru 3,243 13.39 20.63 1.42
Uluguru 3,057 15.92 13.91 1.35
Rubeho 7,984 36.84 40.96 1.06
Malundwe 33 0.29 0.29 1.80
Udzungwa 22,788 101.73 104.05 1.01
Mahenge 2,606 23.58 12.08 0.19
Total 50,765 246.53 259.06 1.19
Conclusions

Our results show that the amount of carbon stored in forests acrossi®@ ha of the
Eastern Arc Mountains of Tanzania is considerable: 1.32 (0.89 to 3.16) Pgstnate is
significantly higher than most previous estimates. However, oue smphisticated method
also has higher uncertainty, implying that other methods mayasuiadty underestimate the
uncertainty involved. Within the tree-dominated land cover categori&®syribal logging is
the most influential direct anthropogenic factor, while the mearbeuwf dry months is the
most influential environmental factor, with an order of magnitude ileg®ct on carbon
storage. We show that WSG, size-frequency distribution variablelsedgick variables are all
important in determining carbon storage. Our estimates indicate that, betweeanad(®@RD8,
tree-dominated communities across the study areas showed nacarmgndinange, however
some areas were identified as large sinks (0.8% of the study ad others large sources
(1.4% of the study area), showing the importance of taking a larelscate approach. The
carbon maps produced and statistical relationships documented carpalésysmakers in
designing policies to maintain and enhance carbon storage forelmagation and other
ecosystem services.

Method

We collated data from 2,462 tree inventory plots within our study(aemaAdditional file 1:
SI3), then applied a quality control and standardisation protocol. Thisston$ two main
steps: (1) Metadata quality control; and (2) Measurement bias detection.

Firstly, all plots lacking a recorded spatial location and adfiaeea were discarded (770
plots). Plots where one or more diameter at breast height ([0Btd) were known to be
missing were also excluded (7 plots). Furthermore, plots smhbber @.025 ha (16 plots)
were deemed to produce unreliable carbon estimates so also removed froragée dat



Secondly, to assess possible measurement bias, i.e. not measurirttresises and so
overestimating biomass [78], the remaining plots were grouped bedldefield researcher.
Size-frequency distributions, using 10 cm size classes, weltedfea each of these groups.
Forest size-frequency distributions are suggested to conforhete2tpower law based on
metabolic scaling [79]. Although it has been argued that this ruletiglobally applicable

[80], many studies accept this as a theoretical maximum valuthé abundance of large
stems [81]. Thus, researchers with many plots above this maximiue lieely measured

stems around buttresses and so were removed (1 researcher, 100 Plots).

The quality control and standardisation procedure resulted in a daitdsé11 tree inventory
plots (median 0.1 ha, mean 0.1 ha, mode 0.1 ha [43 plots with multiple cemsed&s) 0.1
ha, mean 0.5 ha, mode 1.0 ha]; Figure 1; see Additional file 108 further information)
from which we calculated plot-level stand structure indices and gbmwed carbon storage
per unit area (see Additional file 1. SI2 for full details). \Matained the exponent and
intercept of the population size-frequency distribution using the pawmefil for each plot
using the log-log transformation method. Whereby, for each plotreated 10 cm bin size-
frequency distributions based on DBH, and a linear model of the logaof frequency
against the logarithm of the size class was fitted. Whilstasoaccurate as the maximum
likelihood estimation method, our simpler method is more stable fary o& our plots,
providing both the intercept and slope indicators of population structure [82].

We obtained WSG data via the phylogenetic information provided bytreerinventory
plots. We used a global wood density database to extract speeragea WSG [83]. This
procedure provided over 32,000 trees with WSG data. When this was not poessible
adopted a hierarchical approach, first applying the appropriate geetega if available
(~14,000 trees) before considering family average (~9,500 treesgydrage (~4,500 trees)
and dataset average (~80 trees) in turn [84]. Including WSG asdditional parameter in
allometric equations reduces the biomass estimation error [49,85,86].

In addition, we estimated plot biomass using moist forest treenetty [86] based on
measurements of DBH from our tree inventory plots, WSG (asidedcabove) and height
data (derived from our dataset using the best fit DBH-heightiequarm [Equation 5.1; see
Additional file 1: Sl4], if not measured in the tree inventory ploEpally, carbon was
assumed to be 50% of biomass [7].

For a smaller number of plots, multiple measurements were available ovén tin3; mean
plot size = 0.5 ha; mean measurement period = 3.9 years). We alati@anges in carbon
storage rates by dividing the difference in carbon storage atssnbetween censuses by the
number of years separating them.

For our 1,611 geo-referenced tree inventory plots, we obtained furtfeemation on
variables falling into five broad categories; anthropogenic, diangéographic, edaphic, and
pyrologic (median resolution 1.0 ha, mean resolution 22.0 ha, mode resolution;1.0 ha
Additional file 1: Table S6). Anthropogenic data, further divided intcssixcategories, were
obtained: (1) population pressure variables (n = 14 related variabées) abtained from
Platts (2012) [87] (see Additional file 1: SI7); (2) Dar es &alaelated variables (n = 3; e.qg.
distance to Dar es Salaam), (3) market town related varigbles3; e.g. distance to market
towns), and (4) infrastructure related variables (n = 2; eggartte to roads) were derived
from available topographic maps; (5) historical logging (n #dm Swetnam et al (2011)
[88]; and (6) governance (n = 1) from the World Database on Protactas [89]. Climate



data were divided into three subcategories (precipitation [n =ainmum mean cumulative
water deficit and mean number of dry months annually], temperature4dfnmean annual
temperature, mean annual minimum monthly temperature, mean annualymoaiinum
temperature, and mean annual monthly temperature range] andpeedi [s = 1]) and were
derived from the Tropical Rainfall Measuring Mission [90,91], WolilehkC[92,93], and
United States National Aeronautics and Space Administrationcguniateorology and Solar
Energy [94] datasets. Similarly, geographic data have two vesiglspect [n = 1] and
incoming solar radiation [n = 1]) derived from Shuttle Radar Topografikgion [93] and
National Renewable Energy Laboratory [95,96] datasets respecthasdily, we extracted
edaphic data (n = 6) from the International Soil Referencdrdndmnation Centre database
[97,98] and fire-related variables (n = 5) derived from MODIS images [99].

We then correlated these variables with carbon storage, andifadl this, its components:
WSG, the intercept of the power law relationship, and the gradietiheo power law
relationship, in each case using general linear models (see Additiend: SI12-5). No
transformations were required to ensure a normal distribution whesglatorg either WSG,
the intercept of the power law relationship or the gradient opomeer law relationship with
the individual variables. However, carbon storage estimates rdqairesquare root
transformation to ensure a normal distribution within the generaadi models (normality
was confirmed using the Shapiro-Wilk test; p-value > 0.05). In all mpgdots were
weighted by the square root of their area as confidence in bie@stsgtion increases with
the area surveyed [100,101]. Landscape scale spatial autocorrelataacemnted for by
including spatial terms (latitude, longitude and the interactionseaetihem) in the model
(Additional file 1: Table S6) [102]. The numerous possible interactieere excluded from
the models, as these were found to add very little explanatory gowbe models, only
increasing R-squared values by ~0.001 with the addition of each ctberaderm. All
analyses were performed using R 2.12.1 [103] and mapped in ArcGIS v9.3.1 [104].

When assessing carbon sequestration (n = 43) fewer degrees ofrfreente available,
therefore explanatory variables need to be grouped. Therefore, we wmhdugprinciple
components (PC) analysis, obtaining five PC which explained >90%eofcumulative
variance of the individual influential variables (Additional file lable S4). Then,
covariation of PC with carbon sequestration was assessed in§tbadndividual influential
variables. Carbon sequestration estimates required a cube-roobrmaatgsn to ensure a
normal distribution within the general linear models (confirmedguie Shapiro-Wilk test;
p-value > 0.05). This enabled the effect of multiple variables texbenined even with this
limited dataset. PC analysis of the variables was performedheorsdaled data using the
prcomp package [105] within R 2.12.1 [103]. All other aspects of the modeghtivey and
spatial autocorrelation) were performed identically to the mdoelsarbon storage and its
components.

The most appropriate model was chosen using forward and backwardssteggiection.
Forward models are more useful for inferring causal relationsff$ and so were
preferentially used to infer the influential variables of carbarage and sequestration.
However, averaging forward—backwards and backward—forwards predictiopesrfotrms
conventional selection procedures [43] and so both methods were used vilnatingsthe
spatial distributions within the study area. Akaike informatiategon (AIC) was used to
reduce/expand the models, with variable selection occurring whevatteble reduced the
mean squared error (MSE) under ten-fold cross validation [106]. Unlddelnselection
using R-squared, which neglects the principles of parsimony, AfSiders both model fit



and complexity, resulting in better predictions and allowing inmfege to be made from
multiple models [107]. Model selection continued until the addition/remo¥alurther
variables able to reduce cross validation MSE no longer incred§zditfereby producing
the best-fit model with the lowest prediction error [43].

Within each category (anthropogenic, climatic, geographic, edaphic, yaabbgic), some
variables were highly correlated (Additional file 1: Table @@y this may confound the
stepwise procedure as each variable does not carry enough disfmetation [108]. For
example, all temperature related variables (Additional fild@dble S7) were correlated (R-
squared > 0.6). However, it is unclear which correlated besthétkariables of interest, e.g.
carbon storage and sequestration. Many studies include mean anmuedateire in biomass
models [77,109], but theory suggests that it may be the temperange driving this
relationship as photosynthesis correlates with maximum tempesatout respiration with
minimum temperatures [76,110,111]. We found that, if we removed correlatadlga prior
to model selection, the final models were artefacts of the blasave had selected. For
example, if we included mean annual temperature in the model, bigmperature range,
then the significant correlations between mean annual tempeetdrdLC storage were
found. However, these correlations were insignificant if temperatmge was added to the
model, with the newly added variable showing a significant effestead. In short, the
resultant models were automatically biased towargdsori expectations. To avoid this bias,
we devised a procedure by which the influential variables includeddelnselection were
selected by their ability to explain variation within the daftanterest (e.g. carbon storage).
All variables (describe above) were included in model selectione Gims had run to
completion the model was assessed. The subcategory with the onesated variables
retained within the model was selected and all but the most infijesignificant variable
were removed. For example, if all four temperature-relatecaias were included in the
initial model and this was the largest group of variables thergtbigp would be selected.
Then, if mean annual temperature was the most influential and significantra¢uneeelated
variable, all other temperature-related variables would be excluidéae next round of
model selection. Thus, stepwise model selection was then repeateall fremaining
variables. This process was repeated until no highly correlateablesiremained within the
model produced.

Since only landscape-scale variation was accounted for by thal 4patis already included
in the model (latitude, longitude and the interactions between thabhe T; Additional file
1: Table S6), it was necessary to investigate the effecoaafl-kcale (<10 k) spatial
autocorrelation [102]. To do this, the separate forward and backwaadIsn containing no
highly correlated variables (produced above), were mapped. Thesutheof the model
estimates within the maps were extracted at 1, 3, 5, 7 and “@&aiutions, and included as
additional variables (representing local spatial autocorrelatramsjento the stepwise model
selection process, which was re-run a final time [112]. HowereaJlicases, local spatial
autocorrelation terms were rejected as they did not reduce cross validaiied M

Since it was not necessary to include local spatial autocoorel@erms in the models, the
preliminary maps produced above could be regarded as final spptedestations of the ten
best fit models, two (forward and backward) for each of thevarebles of interest (carbon
storage, carbon sequestration, WSG, the intercept of the power kwonship and the
gradient of the power law relationship). Each pair of maps (foramaddoackward) were then
combined into a single, final weighted mean estimate. The rdtitheo relevant cross
validated MSE of the forward and backward models was used t@ ¢heatveighted mean,



with the model showing lowest error receiving the highest kg [43]. Thus, we
ultimately produced five maps (from ten best fit models); onk &&acarbon storage, carbon
sequestration, WSG, the intercept of the power law relationship, angradesnt of the
power law relationship. As our carbon storage estimates wereddrom data representing
trees with a DBH greater than or equal to 10 cm, regioeatiynates of ratios from Willcock
et al (2012) were used to estimate the unmeasured component ot@dhGes[42], this was
summed with our modelled carbon storage estimate, providing anaestof total ALC
storage.

Although the five maps produced covered the entire study area, weecarecerned that
extrapolating predictions beyond the range of observed predictoblesritiom our dataset
could result in large, unquantifiable errors. Thus, we limited theets to localities where all
the associate variables were within the range of that showwourndataset, thus only
interpolating within our correlation models for tree-dominated landrocategories. For any
pixels outside the data range, look-up table methods were used imepcefeto the
correlation model estimates. Thus, for every land cover in our stredy containing trees
(open woodland; closed woodland; forest mosaic; lowland forest; sub-mordesst; f
montane forest; and upper montane forest [41]) that fell within thiesliof our dataset, the
estimate of carbon storage derived from the correlation equationssedsFor all other land
cover categories, and for those localities for which predictorbagdell outside the ranges
of values used in model construction, land cover based look-up table valmed/flicock et
al (2012) were used to estimate ALC storage [42]. In total, lookhle t@lues were applied
to 52% of the landscape, although this was predominantly to low carbon desed c
categories, with 86% of the EAM (which hold the majority of tegions tropical forest
[113]) estimated using the correlation approach described above.atestiof WSG and
population structure were only made for wooded land cover categoitasestimates for
areas within our dataset range being derived from the relevantatiomeequations and
estimates for other areas coming from land cover based looklepvelues derived from the
median value of our WSG and population structure data (weighted Isgtlaee root of plot
size and derived via sampling with replacement 10,000 times) forl@adlcover category
(Additional file 1: Table S8). For carbon sequestration, again, as&were only made for
wooded land cover categories for those areas inside the range atasgtdestimates derived
from the correlation equations were used. However, unlike carbon stoA#g&, and
population structure, for areas outside the range of our datasetj adeer based look-up
table was not used as several land cover categories were pdganted due to the small
sample size available (n = 43). Instead, for pixels outside tige raf the correlation-derived
carbon sequestration model (16% of pixels with wooded land coverieden value of
data from our recensused plots (again weighted by the square pbot size and derived via
sampling with replacement 10,000 times) was utilised.

For every 1 ha pixel of each map derived from correlation equaticngpreduced 95%

confidence intervals (CI). If the pixel estimate was derifrech the general linear models,
then the pixel 95% CIl was calculated by adding and subtractinggtlee root of the cross
validation MSE. For look-up table pixels the look up table 95% CI wezd. dhe pixel 95%

Cl describes, for every pixel, the range we would expect efhobr estimates to lie within.

However, as we are also interested in estimating carbon sta@ragd) sequestration on a
landscape scale, indications of uncertainty are also requirechdgckgpe-scale. Simply
summing the pixel 95% CI to derive 95% CI of the overall landseapk estimates would
incorrectly treat random error as a region-wide systemadis. dihus, to derive 95% CI for
landscape-scale estimates, we randomly allocated each pixedtiarate within the range



dictated by its 95% pixel Cl, and summed these values across tre lantlscape. This
process was performed 10,000 times and the median value and 95% Z5(trend 9,750
ranked values, which may not be equally distributed around the medraapdveground
carbon storage and sequestration in the study area were obtained.

For the final model of carbon storage estimates, we investigetedthe components of
carbon storage (population structure, WSG and tree height) imeracultimately produce
the ecosystem service of carbon storage. We obtained estirhatesiomum canopy height
from the best fit DBH-height equation [Equation 5.1; see Additional fil SlI4], and
combined this spatially with our correlation model derived estin@dt@8SG, the intercept of
the power law relationship and gradient of the power law relationg¥gpthen correlated
these against our estimates of carbon storage, allowing aiblgosgeractions, and selected
the best-fit model (via AIC) using both forwards and backwards stepwise regression.

Ethical approval for the above study was obtained from the Faculigvafonment Research
Ethics Committee, in accordance with the University of Leeds research ptiicy.
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relationship (a proxy measure for the proportion of larger stems) in treexaleahiand cover
categories within the study area (a), with upper (b) and lower (c) pizetl85% CI. See
text for details on methods.

Additional file_6 as DOC

Additional file 6: Figure S5 The 29 order interactions relating my carbon storage
derivatives (wood specific gravity, maximum canopy height, the intercept of ther peow
relationship, and the gradient of the power law relationship [shown here as WS, heig
intercept, and gradient respectively]) to aboveground live carbon storage. Daslieelsred |
indicate 95% CI.

Additional_file_7 as DOC

Additional file 7: Figure S6 The effect of MAT on tree height for a range of DBH. The data
(points) correspond to DBH ranges whereas the Gompertz model fits (sol)dllustsate

the relationship for mid-point of this range only. Dotted lines represent the 95CIrmbted
fits.
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