
Persistent effects of a severe drought on Amazonian
forest canopy
Sassan Saatchia,b,1, Salvi Asefi-Najafabadyb, Yadvinder Malhic, Luiz E. O. C. Aragãod, Liana O. Andersonc,e,
Ranga B. Mynenif, and Ramakrishna Nemanig

aJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109; bInstitute of Environment, University of California, Los Angeles, CA 90045;
cEnvironmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, United Kingdom; dCollege of Life and
Environmental Sciences, University of Exeter, Devon EX4 4RJ, United Kingdom; eRemote Sensing Division, National Institute for Space Research (INPE), Sao
Jose dos Campos, Sao Paulo 12227-010, Brazil; fDepartment of Geography and Environment, Boston University, Boston, MA 02215; and gBiospheric
Sciences Branch, National Aeronautics and Space Administration/Ames Research Center, Moffett Field, CA 94035

Edited by Steven C. Wofsy, Harvard University, Cambridge, MA, and approved November 12, 2012 (received for review March 19, 2012)

Recent Amazonian droughts have drawn attention to the vulner-
ability of tropical forests to climate perturbations. Satellite and in
situ observations have shown an increase in fire occurrence during
drought years and tree mortality following severe droughts, but to
date there has been no assessment of long-term impacts of these
droughts across landscapes in Amazonia. Here, we use satellite
microwave observations of rainfall and canopy backscatter to show
that more than 70 million hectares of forest in western Amazonia
experienced a strong water deficit during the dry season of 2005
and a closely corresponding decline in canopy structure and
moisture. Remarkably, and despite the gradual recovery in total
rainfall in subsequent years, the decrease in canopy backscatter
persisted until the next major drought, in 2010. The decline in
backscatter is attributed to changes in structure and water content
associated with the forest upper canopy. The persistence of low
backscatter supports the slow recovery (>4 y) of forest canopy
structure after the severe drought in 2005. The result suggests that
the occurrence of droughts in Amazonia at 5–10 y frequency may
lead to persistent alteration of the forest canopy.
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In the past decade, Amazonia has experienced twomajor droughts,
as highlighted by the water level of the Rio Negro recorded at

Manaus in central Amazonia, the longest (109 y) available time
series record. The first occurred in 2005 (1, 2), with the minimum
river level at 14.75 m, the lowest in the past 40 y, and the second in
2010, with the river at 13.63 m, the lowest in the record (3). Severe
droughts, often associated with the El Niño–Southern Oscillation
(ENSO), cause a decline in soil moisture, pushing the plant-avail-
able water below a critical threshold level for a prolonged period,
resulting in higher rates of tree mortality and increased forest
flammability (4–7). The drought of 2005 was unlike the ENSO-re-
lated droughts because of its temporal and spatial extent: its peak of
intensity during the dry season and its center of impact in south-
western Amazonia, rather than the central and eastern regions,
which are associated more with El Niño droughts (1).
Warming of the tropical North Atlantic sea surface tempera-

ture is considered amajor contributing factor in the 2005 drought,
which resulted in the lowest river levels recorded to that date in
southern and western tributaries (1, 8, 9). Observations from
ground stations show that precipitation over the southern region
of Amazonia declined by almost 3.2% per year in the period
before this decade (1970–1998) (10). The same region experi-
enced several negative precipitation anomalies during the last
decade, indicating an increase in dry conditions that culminated
in severe 2005 drought (1–3, 11). Climate model predictions also
suggest that the intensity of dry seasons and extreme dry events
may increase with climate change, affecting the ecosystem func-
tion and health of forests in Amazonia (11, 12).
The short-term consequences of drought events are well estab-

lished through ground and satellite observations (3–6, 13). How-
ever, the extent and severity of longer-term impacts of droughts on

the Amazonian rainforest and its functioning are not known.
Measurements of forest structure and density from inventory plots
over humid tropical forests have shown an increase in tree mor-
tality and a decline in the aboveground biomass that may persist
for several years (4, 14, 15). A relationship found between a simple
measure of moisture stress and changes in forest biomass was used
recently to predict the potential impacts of droughts on the Am-
azon carbon dynamics (6). Direct evidence of long-term impacts
of droughts on the Amazon vegetation has been demonstrated
only in controlled small-scale (1-ha plot) field experiments (16).
The study showed the most important forest response to severe
droughts was the mortality of large trees with crowns in the upper
canopy when plant-available soil water declined below a critical
threshold (16, 17). Similar drought effects have been observed in
Amazonia and other regions in research plots (4, 18).
Sensitivity of satellite spectral observations to the forest’s upper-

canopy characteristics (greenness, leaf area), particularly at optical
wavelengths, potentially may provide the necessary information to
assess the long-term impacts of droughts (18). However, recent
results from optical satellites monitoring changes in vegetation
greenness after the 2005 drought have been contradictory because
of severe impacts of clouds and atmospheric aerosols on spectral
observations (3, 19–22) over Amazonia. No study has examined
the potential changes of vegetation detectable at microwave
frequencies.
Here, we analyze data from two microwave satellite sensors

measuring precipitation and canopy water content to quantify
the relative severity of recent droughts and potential impacts on
Amazonian vegetation (Methods). First, we characterize the
drought over Amazonia by calculating three indices derived from
monthly precipitation measured by the Tropical Rainfall Measur-
ing Mission (TRMM; 1998–2010): the dry-season precipitation
anomaly (DPA), dry season water deficit anomaly (DWDA), and
maximum climatological water deficit (MCWD) (SI Methods).
These indices are complementary in their information content and
provide spatially specific indicators about the extent and severity of
moisture deficit in Amazonia.
Second, we examine the impact of the water deficit on the Am-

azon forest by using observations from the SeaWinds Scatterometer
onboard QuickSCAT (QSCAT: 2000–2009). QSCAT operates in
microwave frequency (13.4 GHz), providing backscatter measure-
ments strongly affected by the temporal and spatial variations of
water content and structure of the forest canopy (Fig. S1) (13, 22).
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QSCAT signal propagating at 2.1-cm wavelength and incidence
angles of about 50° penetrates a few meters (1–5 m) into the forest
canopy, depending on forest gaps, and scatters from leaves and
branches of the upper canopy of trees. The backscatter measure-
ments capture biophysical properties of forests, such as the water
content in leaves and branches, and canopy structure (i.e., volume
or biomass) (SIMaterials and Methods). Temporal changes (diurnal
and seasonal) of canopy water content (i.e., leaves and branches)
and seasonal leaf phenology have the largest impact on the radar
backscatter (23). Structural changes such as large-scale forest deg-
radation and deforestation that may change the canopy roughness
(layering of tree crowns), create gaps, and affect the water content
or biomass of the upper canopy of forests can change the back-
scatter signal significantly (Fig. S1). However, because of the in-
cidence angle and large footprint of QSCAT radar, other factors,
such as soil moisture and variations in leaf clumping or orientation
of branches, have less impact on the QSCAT backscatter (23).
In November 2009, QSCAT sensor scanning capability failed

and the sensor stopped collecting systematic data globally, lim-
iting our analysis of the changes in canopy characteristics when
the 2010 drought occurred. However, before its scanning failure,
throughout its mission (1999–2009) QSCAT provided reliable
data over ocean and land surface without any bias or sensor
degradation and continued providing limited data along its or-
bital passes (SI Materials and Methods). To examine the impact
of the 2010 drought, we analyzed TRMM precipitation radar
(TRMM-PR) backscatter data operating at the same frequency
as QSCAT but with nadir-looking incidence angle and surface
backscatter measurements for periods of no rain. TRMM-PR
backscatter responds to the surface moisture by penetrating
deeper into the canopy and scattering from soil and understory
vegetation through forest gaps (SI Materials and Methods).
We used time series of QSCAT backscatter data from dawn

orbits to monitor vegetation in its least-stressed time of day by
studying its monthly and seasonal normalized anomaly and spatial
variations over Amazonia. Throughout the time-series analysis,
the QSCAT backscatter measurement was used as a direct rep-
resentation of the upper-canopy forest structure and water con-
tent to avoid any indirect estimation and validation of water
content or structure (13).

Results
Patterns of Water Deficit. The three indices derived from TRMM
data show a strong negative anomaly over southwestern Amazonia
in 2005 (Fig. S2). Of the total current forested area of the Amazon
basin (∼5.5 M/km2), about 30% (1.7 M/km2) experienced stan-
dardized DWDA less than −1.0 σ (σ: SD) in 2005, and more than
5% of total area (0.27 M/km2) was subject to severe anomalies
(DWDA less than −2.0 σ). Both the spatial extent and the severity
of drought increased in 2010, resulting in more than 48% (2.6
M/km2) of the forest area subject to DWDA less than −1.0 σ, and
about 20% (1.1 M/km2) at DWDA less than −2.0 σ (Fig. S2). In
south and southwestern regions of Amazonia, this anomaly was
superimposed on a dry season that is fairly strong in normal years,
resulting in the forests experiencing a very large water deficit
(MCWD less than −300 mm) by the end of the dry season. The
generally wetter forests in central Amazonia with the largest
negative DPA and DWDA experienced low to moderate water
deficit (MCWD less than −100 mm) in 2005 and 2010. Data show
that precipitation anomalies over these regions lasted only over
a relatively short time span within the last decade. However, the
spatial extent of precipitation anomaly (DPA) and MCWD in
southwestern Amazonia reached to the foothills of the Andes in
2005 and extended to northern regions of Peru, Ecuador, and
Colombia, suggesting a pattern approximately consistent with the
low river stage measured in Rio Negro and other rivers in the
southwestern Amazon basin (2, 9).

Patterns of Drought Impact on Forest Canopy. The impact of this
extensive water deficit on the Amazon forest was captured by the
QSCAT (2000–2009) backscatter time series (SI Materials and
Methods). The dry season standardized anomaly in 2005 showed
widespread (2.1 M/km2) decline in forest canopy backscatter
(anomaly less than −1.0 σ) in southwestern Amazonia (Fig. 1A).
Nearly 40% of this area (0.77 M/km2) indicated a major decline
in backscatter (anomaly less than −2.0 σ). The backscatter
anomaly on a monthly or seasonal basis calculated for 2000–2009
shows a strong spatial correlation with the water deficit anomaly
(WDA) observed by TRMM for the same period, indicating that
water stress is the likely cause of the change in forest canopy
properties. The region affected by the QSCAT anomaly covered
a variety of old-growth forests, from transitional semideciduous
and bamboo forests in southwestern Brazil, northern Bolivia, and
areas in southern Peru and along the Andean flank in western
Amazonia to a variety of inundated and terra firme forests in the
north (24). All nonforested areas were excluded from the anal-
ysis using a global land cover type (SI Materials and Methods).
We performed cross-correlation between the QSCAT and

TRMM anomaly averaged over Amazonia and found correlation
was significant with 1–3 mo lag, but varied over the basin de-
pending on the rainfall patterns (Fig. 1 B and C). In the south-
western region, with a longer dry season, the correlation was lagged
significantly by about 3 mo. However, in the northeastern region,
where the dry season is moderate and short, the correlation was
strong, with no time lag. Spatial variations of QSCAT and TRMM
anomaly in 2005 show that areas captured by highly negative
QSCAT anomaly (less than−3.0 σ) are larger in extent than similar
areas captured by WDA. The difference is explained by closely
examining areas where maximum water deficit (MCWD) in 2005
exceeded 300 mm and/or there was a strong water deficit during
the entire driest quarter (DWDA less than −3.0 σ). The reduction
in QSCAT backscatter, causing the anomaly in the southwest re-
gion, is closely associated with the WDA gradually developing
through the dry season in 2005 (Fig. S3).

Slow Recovery of Forest Canopy. We used the time series of
TRMM and QSCAT anomaly averaged over the area affected by
the drought in southwestern Amazonia (4°S–12°S, 76°W–66°W)
to examine the temporal patterns of the 2005 drought and its
impacts. After 2005, the area affected by the drought had a re-
covery of total rainfall, but WDA stayed negative on the average
during the 2006 and 2007 dry seasons. Recovery of water deficit
started in 2008 followed by an anomalously wet year in 2009 that
extended over all of Amazonia except the northeastern region
(Fig. S4). From late 2009, the water deficit increased before it
rapidly reached its highest value in the decade in southwestern
region (Fig. 2A). However, most remarkably, forest pixels af-
fected by the water deficit over southwestern Amazonia contin-
ued to show low values in the QSCAT backscatter (about 20%
below previous mean) from 2005 through to the end of the re-
cord in November 2009 (Fig. 2B). We used an autoregressive
moving-average (ARMA) model with an order of about 5% of
the data points (>6 mo) to highlight the longer-term trends and
cycles in the data. The time series of the QSCAT anomaly sug-
gests that the 2005 drought caused a step change in the back-
scatter properties of the canopy, with little recovery in the
subsequent years (SI Materials and Methods). The response is
very localized to regions in western Amazonia that experienced
the strongest water deficit anomalies, hence cannot be attributed
to hypothetical changes in sensor performance. We tested the
sensor performance in other regions of Amazonia and the world
to ensure the stability of the backscatter signal and its calibration
(Fig. S5). Spatial patterns of annual QSCAT anomaly for the dry
season support the long-term reduction in backscatter after the
2005 drought until the end of 2009, when the positive anomaly of
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precipitation slightly changed the trend before the 2010 drought
(Fig. S5).
The intensity of the anomaly in 2005 and its gradual shift to-

ward recovery lagging the water deficit also is evident in the
distributions of normalized anomalies for the dry season water
deficit and the canopy backscatter power over pixels in south-
western Amazonia (Fig. S6). The distribution of the QSCAT
anomaly peaked at a value between −2 and −2.5 σ in 2005 but
stayed significantly negative and different from the distribution
of the entire time series for years before 2005 that peaked at
about zero (P < 0.01 from a two-sided t test). During this period,
the distribution of water deficit over the same region alternated
between negative and positive, with a strong negative in 2005

(approximately −1.5 σ), relatively significant water deficit anom-
alies in summer of 2006 and 2007 (approximately −1.2 σ), and
a strong anomaly in 2010 (peaked between −1.5 and −2.0 σ).
The variation of QSCAT anomaly before and after the 2005

drought was tested through statistical time-series analysis to
quantify significance of the step change and trends in the data (SI
Materials and Methods). Using an ARMA analysis over 120 mo
(2000–2009), we found that the QSCAT time series was piece-
wise stationary because of changes in the mean and, to some
extent, the variance over time caused by the 2005 drought. The
autocorrelation function (ACF) and partial ACF (PACF) sug-
gested that the time series had a lag of 1–3 mo with PACF cutoff
after lag 1 (95% confidence interval), allowing the process to be
represented by autoregressive (AR) model (1) on the monthly
but not annual time scale (Fig. S7). The detection of the step
change in the QSCAT time series was performed using the
Breaks in Additive Season and Trend (BFAST) algorithm based
on the iterative decomposition of time-series data (25). The
results show that a significant step change in QSCAT data was
detected in June 2005 with root-mean-square error (RMSE) of
1 mo under the assumption of 97.5% (3 σ) of the noise range in
the data (Fig. 3). The noise level did not influence the RMSE of
the detection, indicating a low commission error in the detection
performance (SI Materials and Methods). The BFAST algorithm
also detected the seasonality of QSCAT anomaly and showed
that it did not influence the accuracy of detecting the breakpoint
in the time-series data. The post-2005 trend in the time series was
not significant, although it showed the slow recovery of QSCAT
signal that lasted about 4 y after the 2005 drought (Fig. 3).
To demonstrate the changes in QSCAT signal relative to

TRMM water deficit, we used the average monthly normalized
anomalies for southwestern Amazonia and calculated the rela-
tive difference between QSCAT anomaly and TRMM monthly
WDA (both are normalized and unitless). On average, the dif-
ference in anomalies stayed at zero (zero slope) before the 2005
drought and had a negative slope after 2005, suggesting a lag in
recovery of QSCAT anomaly relative to the TRMM WDA in
southwestern Amazonia. The largest decline in QSCAT back-
scatter occurred in September 2005 from gradual development
of negative anomalies during the driest quarter in July, August,
and September (JAS). We extended the analysis over the entire
Amazonia by mapping the spatial distribution of the pixels with
negative anomalies in both QSCAT and TRMM data (less than
−1.0 σ) and with significantly (P < 0.01) negative slopes (SI
Materials and Methods) between QSCAT anomaly and WDA

A B C

Fig. 1. Spatial extent and severity of the 2005 Amazonian drought using seasonal (JAS) standardized anomaly of QSCAT backscatter data at H polarization
for ascending orbits (acquired at dawn), capturing the forest canopy water stress and spatial patterns. (A) Magnitudes of QSCAT anomaly beyond ±1.0 σ. (B)
Spatial cross-correlation between the TRMM monthly WDA and the QSCAT monthly anomaly with 1 mo lag over the period 2000–2009. (C) ACF developed
between the two datasets averaged over forested pixels in Amazonia with time lags ranging from 0 to 18 mo in either direction. Dashed lines represent the
95% confidence interval as ± 2=
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Fig. 2. Time series of (A) TRMM and (B) QSCAT monthly anomaly over
western Amazonia (window: 4°S–12°S, 76°W–66°W). Solid lines show the
result of the ARMA of the order of 6 mo.
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after the 2005 drought (Fig. 4A). Pixels with larger negative
slopes represent areas with a longer lag in canopy recovery rel-
ative to the recovery of the water deficit and showing persistent
drought impacts on canopy characteristics. Regions A and B,
respectively, show the old-growth forests of southern Peru and
the states of Acre and Rondônia in the western Amazon of
Brazil. Region C covers a mosaic of undisturbed and disturbed
forests in the state of Mato Grosso and southern Pará (both in
Brazil). All three regions were reported to have an anomalously
higher number of fires in 2005 and subsequent years, suggesting
a potential lower canopy water content and higher fuel loads
(4, 22). The 2005–2009 forest loss and degradation from de-
forestation and fire impacts did not change the persistent
QSCAT negative anomaly (Fig. S8). However, a significantly
large number of fires during 2005–2009 (>35%) occurred in
QSCAT pixels with strong negative anomaly (less than −1.0 σ) in
2005, and more than 78% of fires in 2010 occurred in pixels with
large negative slopes (less than −0.01). The occurrence of fires
and the areas with slow recovery after the drought coincided with
regions with large seasonality of backscatter in QSCAT data,
pointing predominantly to transitional and seasonal forests of
Amazonia (Fig. 4B) (SI Materials and Methods).

Discussion
Overall, the results of QSCAT analysis indicate two important
conclusions. First, the QSCAT anomaly captures the extent and
intensity of the 2005 drought impact on the Amazon forest and
provides patterns consistent with areas that experienced the
largest water deficit in the driest quarter. Changes in QSCAT
backscatter are the result of changes in the properties of the top

layer of the canopy, consisting of emergent crowns that often are
exposed to higher vapor-pressure deficits and consequently are
more sensitive to droughts (4, 16). Theoretically, the widespread
decline in radar backscatter suggests changes in canopy water
content and structure (e.g., fresh biomass), unlike what was ob-
served in optical sensing (3, 20). The decline in backscatter
suggests a reduction of upper-canopy biomass or canopy rough-
ness attributed to potential drought-driven disturbance. The
magnitude of the decline in 2005 is significantly larger than
seasonal amplitude of the QSCAT backscatter caused by phe-
nology and changes of canopy water content from natural cycles
of dry and wet seasons.
Second, the QSCAT anomaly remained negative after the

2005 drought over a large area in western Amazonia, suggesting
the persistent effect of the drought on the forest canopy. The
severity of the disturbance caused a slow recovery of the forest
canopy to its predrought condition in terms of biomass or
roughness (canopy layering), lagging the precipitation recovery
of subsequent years until the 2010 drought. Notably, more than
0.6 × 106 km2 of areas affected by the 2005 drought (QSCAT
anomaly less than −2.0 σ) coincided with the areas affected by
the 2010 water deficit (TRMM DWDA less than −2.0 σ), sug-
gesting a potentially widespread exacerbation of stress on forests
of south and western Amazonia.
Without extensive surveys and perhaps airborne observations

and validations, the interpretation of the decline of backscatter
and its direct relation to the forest disturbance remain chal-
lenging. A simple wilting or shedding of leaves during the peak
drought, resulting in a temporary decline of net primary pro-
duction, would be expected to be followed by recovery of canopy
properties within a year. Such recovery is apparent in central
Amazonia, where the backscatter anomaly recovered rapidly,
despite experiencing a strong water deficit and QSCAT anomaly
in 2005 (Figs. S2 and S3). The delayed recovery of QSCAT in
southwestern Amazonia suggests a decline in more long-lived
aspects of canopy structure with recovery timescales greater than
3–4 y, such as loss of leaves or dieback of branches, or potential
tree falls creating large gaps.
We found no in situ observations over the region affected by

the 2005 drought that could be used to directly verify our results.
However, in most tropical drought studies, there is strong evi-
dence that large-diameter or emergent trees have significantly
higher mortality than small trees (16–18, 26, 27). The effects of
extreme droughts on the understory light environment of tropical
forests may be compared with the effects of tree-fall gaps, al-
though on much larger scales (27). With the recovery of rainfall
and potential increase in light availability due to gaps from
canopy disturbance, the understory vegetation and pioneer spe-
cies may increase productivity a few months after severe
droughts (22). These changes may affect nadir-looking optical
satellite observations with sensitivity to vegetation greenness and
photosynthesis capacity (3, 21, 22). In situ measurements show
that the mortality of large trees remains elevated even a few
years after the drought (4), suggesting a decline in canopy
structure or biomass followed by gradual development of canopy
emergent trees (4, 22). The recovery of canopy trees after the
drought event is a slower process and may take longer to reach
the predrought state (18, 22, 25, 26). Based on the results from
this study and the evidence reported in the literature, we hy-
pothesize that western Amazonia experienced a large-scale
canopy disturbance from the 2005 drought, resulting in the de-
cline of emergent and canopy tree structure and biomass that
continued with a slow recovery for the next few years. We expect
future field campaigns directed to examine the effect of severe
droughts and analysis of existing in situ data from permanent
research plots in western Amazonia (4) to test the hypothesis and
potentially verify the results of satellite observations.

Fig. 3. (A) BFAST seasonal trend decomposition of the QSCAT monthly
normalized anomaly time series of southwestern Amazonia (window: 4°S–
12°S, 76°W–66°W) into seasonal, trend, and remainder components. (B) The
seasonal component is estimated by taking the mean of all seasonal sub-
components starting from January 2000. The range of seasonal amplitude is
less than 20% of the range of QSCAT anomaly. (C) One abrupt change in the
trend component of the time series is detected on June 2005. The shaded bar
indicates the 97.5% (3 σ) confidence interval. (D) The remainder shows the
variation of the signal after the removal of the trend capturing the temporal
variations in the time series.
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A large-scale drought disturbance of forest structure from
mortality of large trees and, to some extent, a drop in the leaf
area of the forest (16, 28) may lead to a sustained efflux of
carbon dioxide from the decay of wood, with the process sig-
nificantly perturbing the net ecosystem exchange and carbon
fluxes (11, 12, 14). Results from climate analysis for the period
1995–2005 demonstrate a steady decline in plant water avail-
ability over the same region, suggesting a decade of moderate
water stress before the 2005 drought (10, 22), helping to trigger a
large-scale canopy disturbance after the 2005 drought. A higher
water deficit in subsequent years, together with another strong
local drought in 2007, suggests that soils from a large portion of
southwestern Amazonia may not have reached the field capacity,
which would favor canopy recovery (29). Other factors, such as
a decline in rainfall and larger variability in the dry season over
southwestern Amazonia since the late 1980s and early 1990s
(Fig. S9), may have contributed to an increasingly drier condition
in this region. We show that these recent negative anomalies and
year-to-year variations are strongly linked to both the warming
and variations in the sea surface temperature (1, 2). The most
recent droughts are related to higher temperatures in the trop-
ical Atlantic, showing a strong regional sensitivity of WDA to the
tropical North Atlantic index (Fig. S10).
Our analysis ends in 2009. It seems likely that the observed

canopy response was repeated in the more severe drought of
2010 (Fig. S11), for which QSCAT data are not available; hence,
a new wave of disturbance may have affected forest canopies not
yet recovered from the previous droughts and water deficit. The
TRMM-PR backscatter anomaly suggests that the surface
moisture in western and southern Amazonia dropped signifi-
cantly in 2010 and lasted longer than the dry season (Fig. S11),
potentially causing more stress on the forest canopy. If droughts
continue to occur at 5–10-y frequency, or increase in frequency,
large areas of Amazonian forest canopy likely will be exposed to
the persistent effect of droughts and the slow recovery of forest
canopy structure and function. In particular, areas of south and
western Amazonia have been shown to be affected severely by
increasing rainfall variability in the past decade, suggesting that

this region may be witnessing the first signs of potential large-
scale degradation of Amazonian rainforest from climate change
(10, 11, 30).

Materials and Methods
This study is based on the use of various microwave satellite observations of
Amazonia to detect the regional and potential severity of the impact of the
2005 drought on the Amazon forests. Our approach includes five steps: (i)
spatial analysis of monthly TRMM rainfall data to calculate the standardized
anomaly of rainfall during the dry season, maximum water deficit, and
anomaly of monthly water deficit; (ii) spatial analysis of monthly QSCAT
backscatter data to computer pixel-level standardized anomaly from the
satellite dawn orbits to monitor vegetation in its least-stressed time of day
and its spatial correlation with TRMM water deficit; (iii) time-series analysis
of QSCAT monthly backscatter anomaly over western Amazonia using the
ARMA model, testing ACF and PACF with time lags, and iterative application
of the additive decomposition algorithm BFAST to detect a significant
breakpoint and trend in the QSCAT data associated with the 2005 drought;
(iv) quantifying the impact of deforestation and fire occurrence on the
QSCAT anomaly and trend results and showing the independence of the
results from canopy disturbances that may have been caused by fire and
degradation during and after the 2005 drought; and (v) testing the regional
impacts of variations in the historical climate data on the patterns of rainfall
anomaly in Amazonia to explain the climatic cause of recent droughts in
Amazonia. Our analysis of the QSCAT data was limited to the period 2000–
2009 and could not provide information about the 2010 drought. We in-
cluded the TRMM-PR backscatter anomaly to demonstrate the changes in
surface moisture during the 2005 and 2010 droughts as evidence of the
potential impact of the 2010 drought on forests in southwestern Amazonia
already affected.

We used the Moderate Resolution Imaging Spectroradiometer (MODIS)
land cover map of 2005, GlobCover land cover map of 2009, and MODIS-
derived pixel fire counts from 2001 to 2010 to exclude nonforest pixels from
our analysis and to quantify the percentage of pixels with a large QSCAT-
negative anomaly affected by fires after the 2005 drought (2005–2009) and
during the 2010 drought. We had no independent ground measurements to
verify our results because of the large pixel size of the satellite observations
and the recentness of the drought event. However, we provided biophysical
interpretation of the satellite observations and evidence from in situ
measurements and ecological studies to corroborate our findings of the
persistent effect of droughts on forest canopy. We provide detailed in-
formation about the data in SI Materials and Methods.

A B

Fig. 4. (A) Spatial representation of the rate of recovery of pixels affected by QSCAT-negative anomaly (less than −1.0 σ) calculated by the slope of the
difference in QSCAT and TRMM monthly anomalies from September 2005 to November 2009 (SI Materials and Methods). Pixels with significantly large
negative slopes represent forests with slower recovery and cover an area of ∼4 × 105 km2. Areas delineated in highlighted areas as A, B, and C represent
regions in southeastern Peru, the state of Acre in Brazil, and areas in the state of Mato Grosso, respectively, showing areas with potentially the largest impacts
of the 2005 drought. (B) Spatial representation of areas with strongest seasonality in canopy properties detected by the QSCAT backscatter measurements
(2000–2009).
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SI Materials and Methods
Tropical Rainfall Measuring Mission Data Analysis. Monthly time
series (1998–2010) of Tropical Rainfall Measuring Mission
(TRMM)-merged precipitation data at 0.25° spatial resolution
(3B43-v6: Goddard Distributed Active Archive Center (GES
DISK DAAC) with cumulative values estimated in millimeters
per month were used to calculate the monthly precipitation
anomaly and dry-season [July, August, and September (JAS)]
precipitation anomaly (DPA) of 2005 and 2010 (Fig. S2). The
anomaly on a pixel-by-pixel basis (i, j) for each year (y) was cal-
culated as a departure from the 1998–2010 mean (TRMM1998–2010),
excluding the measurement from year (y) and normalized by the
standard deviation (STD):

TRMMy anomalyði; jÞ ¼ TRMMyði; jÞ− <TPMM1998−2010ði; jÞ>
STDðTRMM1998−2010ði; jÞÞ :

As a complementary measure of drought, we also calculated
the monthly water deficit (WD) and cumulative WD (CWD)
values at the pixel level from the TRMM time series. For this, we
first calculated the monthlyWDs based on the approximation that
a moist tropical canopy transpires about 100 mm/mo. This value
was obtained from ground measurements in different locations
and seasons in Amazonia (1). If the monthly precipitation is less
than 100 mm, the forest enters WD; otherwise, the WD is set to
zero. First, we calculate WD for each month (n) from (2):

if  WDn−1ði; jÞ−Eði; jÞ þ TRMMnði; jÞ< 0;
then  WDnði; jÞ ¼ WDn−1ði; jÞ−Eði; jÞ þ TRMMnði; jÞ;
else  WDnði; jÞ ¼ 0

where E(i,j) is the evapotranspiration and TRMMn(i,j) is the
monthly precipitation at each pixel. The WD as calculated in the
above equation is the same as the CWD of any month repre-
senting the sum of WD values up to and including that month
(3); the maximum climatological WD (MCWD) in a year is the
maximum value of CWD recorded in that year. The WD will
always reset to zero when monthly rainfall is greater than 100
mm. This will allow a relatively wet dry season to have no impact
on the maximum WD. The seasonal WD is obtained by im-
plementing the above formula for every quarter and using the
WD from July to September as the WD for the dry season.
We used the DPA, dry-season WD anomaly (DWDA), and

MCWD as three measures to map the extent and intensity of
droughts. Together, these measures are strong predictors of
drought intensity and provide complementary spatial information
on the extent of droughts that correlate with tree mortality. DPA
and DWDA for 2005 and 2010 show the patterns of anomalous
water availability extending from southwestern Amazonia to the
interior of the basin, where forests do not often experience a dry
season in normal years (Fig. S2). However, MCWD provides the
magnitude of WD related to the intensity of drought and its
spatial footprint in south and southwestern Amazonia.

QuickSCAT Data Analysis. The entire record of QuickSCAT
(QSCAT) time-series data (1999–2009) was obtained from the
National Aeronautics and Space Administration (NASA) Scat-
terometer Climate Record Pathfinder (www.scp.byu.edu/). The
dataset contains the enhanced resolution (4.45-km pixel grid and
8–9-km effective resolution) four-dimensional (4D) composites
at both H (horizontal) and V (vertical) polarizations and for

ascending and descending orbits with equator crossing at 0600
and 1800 hours local standard time (LST), respectively. We
chose QSCAT as an alternative to optical Moderate Resolution
Imaging Spectroradiometer (MODIS) data to study the Amazon
vegetation response to droughts (4) because (i) the radar back-
scatter at microwave frequency (13.4 GHz) and high incidence
angle (∼46° and 54° from zenith) over dense forest cover is
strongly sensitive to the upper-canopy (predominately leaf and
branch) structure and water content through the canopy di-
electric properties (Fig. S1) (5, 6), and (ii) being an active mi-
crowave sensor, QSCAT images over tropical forests have almost
no effects from the presence of clouds and aerosols, and no
sensitivity to seasonal variations to incoming solar radiation (5).
The effect of atmospheric water vapor on the signal also is
negligible and has no impact on the data quality (5, 7). We
compared QSCAT data with other similar sensors, such as the
TRMM precipitation radar (TRMM-PR) surface backscatter for
the continuation of the data record to examine the changes in
surface moisture during the 2010 drought. We found no other
radar measurements with strong sensitivity to forest canopy
characteristics (Fig. S1) (8).
We used QSCAT backscatter data (σ0) at H polarization in

ascending node from morning passes (0600 LST) to create both
monthly and dry-season (JAS) anomalies for the entire time
series using the equation

σ0anomalyði; jÞ ¼ σ0y ði; jÞ− < σ01999− 2009ði; jÞ>
STD

�

σ01999− 2009ði; jÞ
� :

The H and V polarizations provided similar results. However,
the morning passes showed stronger anomaly than the late af-
ternoon passes, probably because of the higher canopy water
content in the morning with trees naturally in the least-stressed
condition because of overnight hydrological recharge (higher
QSCAT backscatter) and hence greater sensitivity to the water
content status of the canopy (5). Note that in all analyses, we
used the QSCAT backscatter power values in linear scale (m2/
m2) and not in decibels to allow compatible analysis between
rainfall and QSCAT.

QSCAT Performance. QSCAT backscatter data (σ0 in decibels)
were collected on a sun-synchronous orbit with twice-daily
swaths over a given point, providing morning passes (∼0600
LST) in ascending orbits and evening passes (∼1800 LST) on
descending orbits. We acquired aggregated data covering July
1999 through November 2009 from the NASA Scatterometer
Climate Record Pathfinder project. The data were reprocessed
from the native sensor resolution of ∼25 km, with roughly daily
coverage, by combining multiple orbit passes to generate image
products with improved spatial resolution (4.45 km) and reduced
temporal resolution (4D) (9). The QSCAT backscatter data
were calibrated throughout the instrument lifetime using in situ
measurements and data from other sensors (9).
In November 2009, the QSCAT antenna ceased to spin after its

continuous operation over more than a decade. However, the
sensor continued to collect valid backscatter data over narrow
tracks and at a fixed azimuth angle; these data are being used to
calibrate and validate Oceansat, a new sensor with similar con-
figuration from the Indian Space Agency. There has not been
any evidence of QSCAT backscatter calibration failure or signal
degradation during its operation for global coverage. QSCAT
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has provided reliable data products of wind speed over oceans
(10), soil moisture over land (11), and sea ice cover over polar
regions (12). To demonstrate the stability of the QSCAT signal
over land after the 2005 drought, we developed the backscatter
anomaly over the northwest region of Amazonia that was not
affected by the 2005 drought (Fig. S4). Similar patterns may be
observed readily over other regions of the land and ocean.

Biophysical Information in QSCAT Backscatter. Space-borne scat-
terometers have provided continuous microwave coverage of
the earth for approximately two decades. These scatterometers
originally were designed to measure oceanic surface winds and
land surface parameters such as soil moisture. However, their
data also are extremely useful in a broad range of ice and land
applications, including the use of extensive scatterometer time
series to determine seasonal and interannual variability and
possible relationships to climate change (9, 13). To date, there
have been five space-borne scatterometers with long time-series
measurements that have flown on different international space-
crafts. These include the SeaWinds scatterometer onboard
QSCAT (13.4 GHz), which launched in 1999 and continued
collecting data until November 2009; the 5.3-GHz scatterometer
from the European Space Agency (ESA), carried onboard both
the ERS-1 and ERS-2 satellites since 1991 and continuing as the
ESA advanced scatterometer (ASCAT) since 2009 (9); and
TRMM-PR, operating since its launch in 1997 at Ku band (14
GHz) and used primarily for rain measurements over the land
surface and a non–sun-synchronous orbit (14, 15).
The scatterometer system transmits radar pulses and receives

the backscatter energy from the surface with its intensity repre-
sented as the normalized radar backscatter coefficient (σ0) (Fig.
S1). The magnitude of σ0 depends on the roughness and di-
electric properties of the particular target under observation,
indicating a strong sensitivity of σ0 to the surface soil moisture
over bare surfaces or open and low-density vegetation (e.g.,
grass, shrub lands) (13) and canopy structure and water content
over densely covered vegetation (e.g., tropical rainforests) (8).
In this study, we chose to use QSCAT data over all other

existing datasets to monitor changes of canopy properties over
Amazonia for several reasons: (i) QSCAT provides one of the
longest records of continuous measurement, with consistent
calibration globally. Other sensors, such as the European remote-
sensing satellite (ERS) series and ASCAT, provide measurement
from three different spacecrafts, with potential differences in
calibrations that may affect long-term time-series analyses. (ii)
QSCAT measurements are performed at higher frequency (13.4
GHz) than ERS and ASCAT sensors (5.3 GHz), with less pen-
etration into the forest canopy and relatively no impact of soil
moisture on the backscatter in densely vegetated surfaces such as
Amazonia. (iii) QSCAT observations are performed at high in-
cidence angles (46° and 54° from zenith), suggesting a strong
sensitivity to only the top few meters of forest canopy (Fig. S1).
To date, there is clear evidence that QSCAT backscatter data
can monitor forest canopy structure and water content with
significant correlations to seasonal and spatial variations of the
canopy leaf area index (LAI) in densely forested areas (8). It has
been demonstrated that QSCAT time-series data can capture
phenological variations over different biomes globally (16).
TRMM-PR measurements also have been collected continu-

ously over a long period (1997 to present) at a relatively higher
temporal frequency than QSCAT twice a day. TRMM-PR
standard backscattered product PR-2A21 is the σ0 value with
a rain flag over the range of incidence angles that may be pro-
cessed to eliminate data when it rains and to develop surface
backscatter similar to QSCAT data. The TRMM-PR ob-
servations are performed at off-nadir angles (−17° to +17°) (17),
making the backscatter measurements over Amazonia strongly
influenced by the surface soil moisture and scattering from

understory vegetation visible to the scatterometer through can-
opy gaps (8).
The penetration depth of the Ku-band signal into the tropical

forest canopy between the two sensors may be simulated using
a simple water cloud model or forest canopy 3D models used for
radar backscatter at different frequencies (18–21). The one-way
attenuation can be simulated using the following model (21):

τ ¼ exp½− κ •GðθÞ •V • en • t=cosðθÞ�;

where G(θ) is the gap fraction seen at any incidence angle; V is
a vegetation parameter such as the canopy water content,
sometimes expressed as the LAI; κ is the adjusted Ku-band
propagation constant into the canopy (2π/λ, λ:wavelength) (18,
19); e is the complex part of the leaf dielectric constant related to
its water content (6); and t represents the opacity of a single leaf
adjusted by leaf thickness (20). Using a landscape-scale LAI = 6
for rainforest canopies (22) as V, varying the gap fraction seen at
different incidence angles (23), we can simulate the attenuation
and the half-power (when incidence energy of the microwave
reaches its half-power) penetration depth (17) to examine the
relative sensitivity of Ku-band backscatter to different layers of
the forest canopy (Fig. S1). The overall variations of the pene-
tration depth may be larger than what has been simulated be-
cause microwave signal propagates farther into the canopy than
its half-power level, and at large footprints (5 km), there often
are large gaps due to variations of forest cover.
In summary, factors affecting the QSCAT data are as follows:

(i) There are seasonal changes in canopy water content that also
may be related to phenology in temperate forests and seasonal
tropical forests (18). (ii) Because of the wavelength of the radar
signal (about 2.1 cm), the penetration depth, and the course
resolution image characteristics, the water content and structure
of branches and leaves affect the scattering as they form the
upper-canopy roughness and dielectric properties. Leaf clump-
ing, the orientation of scatterers, and other minor structural
characteristics have less impact on the QSCAT radar backscat-
ter. (iii) Structural changes of forest canopy, such as large-scale
degradation and deforestation, that may change the canopy
roughness, create gaps, and affect the water content or biomass
of the forest canopy can change the backscatter signal. (iv) In our
monthly time-series analysis, the impact of direct rain and
morning dew or other short-term climate events is negligible. (v)
Soil moisture effect is relatively small on the QSCAT data, ex-
cept in areas where the forest cover is patchy and there are large
areas of exposed soil within the QSCAT pixel.
Results from the TRMM-PR analysis over the Amazon basin

show a similar and strong dependence of incidence angle on radar
backscatter, causing 16–18-dB differences in backscatter from a 0°
to 5° incidence angle (16). In general, the TRMM-PR data pro-
cessed with elimination of the signal during the rain event may
carry information about the surface moisture smoothed over time
without showing the rain events (14). We used the TRMM-PR
data and developed the backscatter anomaly over all of Ama-
zonia to demonstrate the strong anomaly for the 2005 and 2010
droughts (Fig. S11). Although both datasets show similar regions
for the 2005 drought in Amazonia, the QSCAT signal is much
stronger and widespread as it shows only the changes in the
canopy properties and has relatively no information from the soil
moisture. The 2010 backscatter anomaly shows the widespread
changes in surface moisture over Amazonia extending from
the early part of the year and continuing through the end of
2010. The overall behavior of the TRMM-PR anomaly closely
follows the rainfall anomaly shown in Fig. 2 without the strong
signal of rain events, suggesting that the backscatter is responding
to the surface moisture (representing soil and canopy moisture)
rather than the upper-canopy moisture and structure change.
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Time-Series Analysis.We used the QSCAT backscatter values from
January 2000 to December 2009 (repeating the November value
for the missing December measurements) to create a complete
10-y (120-mo) time series for the analysis. We applied an
autoregressive moving-average (ARMA) model to analyze the
QSCAT time-series anomaly. ARMA is based on the autore-
gressive (AR)model that represents the current value of a process
by a function of previous values, plus some noise:

Xt ¼ kþ
X

P

i¼1

ϕiXt−i þ et;

where k is a constant, et is a white noise with zero mean and
constant variance, and ϕ1,......ϕp are the parameters of the
model. The order of AR (p) process is defined by the time lag of
the time-series process p using an autocorrelation function
(ACF). Once the order of the model is defined, the parameters
are estimated using a least-squares regression approach. The
time series would follow a moving-average AR process if we
found that the present observation depended less on the pre-
vious observation and more on how the previous value differed
from its average value (24). The order of the AR model is de-
fined using ACF or partial ACF (PACF) functions, with auto-
correlation with lag-p defined as:

ρp ¼
P

N−P

t¼1

�

X −X
��

Xtþp −X
�

P

N

t¼1

�

Xt −X
�2

;

with SE: SEρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ 2
PP− 1

i¼1 ρ2i Þ=N
q

.
The SE is used to test the significance of the lag time and to

approximate the confidence bounds on the estimate. The PACF is
the same as the ACF when any linear dependence in the time-
series observations is removed. We use a combination of pro-
grams developed in Interactive Data Language (IDL) and R
(programming language) to perform the analysis.
We used the BFAST (Breaks in Additive Season and Trend)

algorithm developed in R (http://bfast.R-Forge.R-project.org/).
The algorithm is based on an additive decomposition model that
iteratively fits a piecewise linear trend and seasonal model to the
data (25):

Xt ¼ Tt þ St þ Rt;  t ¼ 1; . . . ;N;

where Xt is the observation data at time t and Tt, St, and Rt are,
respectively, the trend, seasonal, and remainder variation com-
ponents of the data. The algorithm assumes that Tt is piecewise
linear with potential breakpoints that can be determined by fit-
ting the linear models iteratively to different sections of the data
in a moving window. The abrupt changes are detected by mini-
mizing the residual sum of squares, and their optimal positions in
time series can be determined based on the Bayesian in-
formation criterion (25).

Spatial Analysis. We used the QSCAT monthly anomalies repre-
senting the changes in canopy properties and TRMM monthly
water deficit anomaly (WDA) representing the drought intensity
to examine how the two are related and change across landscape
and time. To examine the relationship between the two, we de-
veloped a spatiotemporal cross-correlation analysis between
QSCAT and TRMM anomalies by resampling the QSCAT data
to match the TRMM pixel and performing pixel-by-pixel corre-
lation. We calculated the Pearson correlation coefficient between
the ranks of variables on a pixel-to-pixel basis using

r ¼
P

i

�

xi − x
��

yi − y
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i

�

xi − x
�2P

i

�

yi − y
�2

r ;

where r is known as the Spearman rho between ranked variables
xi and yi at a pixel location, with x and y being the average of
variables over the time interval. In this case, xi and yi are the
QSCAT and TRMM anomalies over the period 2000–2009. The
correlation coefficients that are significantly different from zero
are then shown for each pixel. We performed the correlation
with time lags extending up to 18 mo (15% of the total points in
the time series) in both directions.
Over southwestern Amazonia, the post-2005 backscatter values

and monthly anomalies stayed lower relative to the pre-2005
values, as shown in Fig. 2. We calculated the average QSCAT
monthly anomalies for all pixels within a TRMM pixel (0.25°) and
computed the difference between QSCAT anomaly (less than
−1.0 σ) and TRMM WDA. The negative difference in normal-
ized anomaly suggests a lag in recovery of QSCAT anomaly
relative to TRMM WDA. We mapped the spatial distribution of
changes in pixels that were affected by the 2005 drought using
the slope of the QSCAT – TRMM WDA monthly anomaly at
each pixel from September 2005 to November 2009. Pixels with
significantly (P < 0.01) larger negative slopes represent areas
with a longer lag in QSCAT backscatter recovery. The map was
colored based on the negative slope of difference over the time
series since the 2005 drought. The spatial analysis also was
performed on the QSCAT data to quantify the average ampli-
tude of backscatter seasonality over the entire QSCAT time
series (2000–2009) to identify areas with the greatest seasonality
in canopy water content (Fig. 4B).

Impact of Deforestation and Fire. Time-series analysis of the
QSCATdataand thepersistent post-2005negative anomalymaybe
affected by the annual deforestations occurring particularly in the
southern and southwestern regions of Amazonia. We included
three datasets to remove the effect of nonforest land cover types
and deforestation from the analysis of the QSCAT data. First, we
used the Moderate Resolution Imaging Spectroradiometer
(MODIS) level 3 global 0.05° Land Cover Type Yearly Climate
Modeling Grid product (MCD12C1, V051) for the year 2005 to
identify the forested areas and mask out nonforested vegetation
including deforested landscapes classified as pasture and crops
(https://lpdaac.usgs.gov/products/). Forest areas were identified
using five main forest classes in the MODIS land cover map:
evergreen needleleaf forest, evergreen broadleaf forest, deciduous
needleleaf forest, deciduous broadleaf forest, and mixed forests.
Second, we included theMODIS Vegetation Continuous Fields

(VCF) product (http://glcf.umiacs.umd.edu/data/vcf/) produced at
500-m resolution annually (2001–2005). We used the 2005 VCF
product, aggregated it to the QSCAT resolution of 0.05°, and
developed a forest cover mask by eliminating all pixels <50% of
tree cover.We applied themasks generated from theMODIS land
cover data and VCF to exclude all nonforested pixels from the
QSCAT backscatter anomaly analysis.
We also used the European Space Agency’s (ESA) GlobCover

2009 land cover data at 300-m resolution produced by ESA 2010
and Université Catholique de Louvain. The map was derived
from Envisat’s Medium Resolution Imaging Spectrometer
(MERIS) data and was used to mask all potential pixels repre-
senting the nonforest types before the end of 2009 (www.esa.int/
esaCP/SEM5N3TRJHG_index_1.html). The GlobCover forest
mask was produced at 300-m resolution using all forest cover
types and later was resampled to 0.05°, and all pure pixels of
forest masks were used as a new mask in the QSCAT anomaly
analysis. In general, the GlobCover 2009 data might have been
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the only mask to eliminate the deforested pixel from our anal-
ysis. However, using the three masks in our analysis ensures that
all deforestations occurring from 2000 to the end of 2009 are
completely eliminated from the anomaly analysis and any ob-
served variations in QSCAT data are directly related to changes
in canopy properties in the more intact forests.
The effect of fire has been quantified using the active fire

product derived from monthly accumulated data, from January
2001 toDecember 2010, at 1-km spatial resolution, fromMODIS–
Terra sensor product MCD14ML collection 5. This product de-
tects flaming and smoldering fires approximately 1 km2 in size
under cloud-free conditions; for particularly “good” observa-
tional conditions (near-nadir and reduced smoke), flaming fires of
100 m2 can be detected (26). Underestimation of fire detection
may occur in situations in which the fire has started and ended
between the satellite overpasses, in cloudy conditions, or under
the forest canopy, or when it is too small or too cool for the 1-km2

footprint (26). We used only high-confidence fire pixels for pro-
cessing the data, allowing a >80% confidence level in detecting
fires. The monthly fire pixel count was then aggregated at 0.1°
spatial resolution. Pre-2005 drought fire effects were masked by
summing the monthly data from January 2001 to June 2005, when
the breakpoint in QSCAT data due to the 2005 drought occurred.
The post-2005 drought effects were masked by summing the
number of fires from June 2005 to December 2009. We also

computed the accumulated number of fires in 2010 to examine
what percentage of the pixels affected by the 2005 drought and
having persistent effects on canopy structure and water content
was susceptible to future fires.

Climate Analysis. We extended the analysis of rainfall over the
southwestern and entire Amazon basin by including the long-term
monthly data from the Climatic Research Unit (CRU; www.cru.
uea.ac.uk/; 1930–2005). We computed the DWDA from CRU
and combined it with TRMM (1998–2010) to show the long-term
variations in precipitation anomalies over the Amazon basin (Fig.
S9). We developed spatial correlation between TRMM (1998–
2010) and CRU (1970–2009) monthly anomalies and the two
climate indices: the Tropical North Atlantic Index (TNA) and
the Southern Oscillation Index (SOI; downloaded from www.
esrl.noaa.gov/psd/data/timeseries/). These indices represent,
respectively, the fluctuation in sea surface temperature in the
tropical North Atlantic and the difference between sea level
pressures in the Pacific Ocean (at Tahiti, Darwin, and Australia)
(27, 28). The correlations are performed on a pixel-to-pixel basis
for the entire region using the Spearman rank correlation
method (above). The TRMM WDA over southwestern Ama-
zonia and TNA index were plotted together to demonstrate the
clear out-of-phase behavior of rainfall patterns with TNA in the
region (Fig. S10).
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Fig. S1. Scatterometer backscatter characteristics over tropical forests. The backscatter return of QSCAT is predominately from the top few meters (1–5 m)
because of the short wavelength of the Ku-band (about 2 cm) and high incidence angles of QSCAT measurements (46°–54°). The backscatter is dominated by
the volume scattering shown in terms of the canopy water content over a depth of dc in the forest canopy. The relationship between volume scattering and
the canopy water content is based on the water cloud model (1). In comparison, the TRMM radar measurements are shown to cover off-nadir incidence angle
(±17°) and respond to surface characteristics representing a combined soil and canopy moisture from a deeper penetration length. Relative variations in
penetration depth of the signal into the forest canopy in terms of incidence angle using a typical attenuation model at Ku-band are shown at the upper right.
Samples of QSCAT and TRMM-PR observations for 3 mo are shown in false color composites in (A) and (B), respectively.

1. Frolking S, et al. (2006) Evaluation of the SeaWinds scatterometer for regional monitoring of vegetation phenology. J Geophys Res 111:D17302.
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Fig. S2. Spatial extent and severity of the Amazonian droughts in 2005 and 2010 using standardized DPA (A and B), DWDA (C and D), and MCWD (E and F),
derived from TRMM monthly precipitation data.
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Fig. S3. Monthly changes in DWDA along with the evolution of monthly QSCAT dry-season (JAS) anomaly, indicating the gradual development of water stress
in the southwestern region of Amazonia in 2005 and the changes in canopy properties (e.g., water content) in response to the water stress. The QSCAT
response to water deficit in Amazonia appears with almost 1-mo lag.
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Fig. S4. (Continued)
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Fig. S4. The distribution of normalized anomalies of pixels within the western Amazonia window. Shown here are the DWDAs derived from TRMM (A) and
the QSCAT backscatter power (B). Annual DWDA from TRMM (A) and the corresponding changes in canopy properties are captured by the annual dry-season
(JAS) anomaly of QSCAT backscatter data (B) over the last decade (2001–2009). Normalized anomaly is colored beyond ±1.0 σ, showing only pixels with
significant departure from long-term average. QSCAT negative anomaly persists over the south and western regions of Amazonia after the 2005 drought
through 2009, when a strong positive anomaly of rainfall makes the QSCAT anomaly less significant. The 2007 moderate drought also enhanced the QSCAT
negative anomaly in 2007 and subsequently in 2008.
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Fig. S5. Average TRMM WDA (A) and QSCAT seasonal anomaly (B) over forested areas in northwest Amazonia showing the performance of QSCAT data after
2005 over tropical forests experiencing no droughts in the past decade. Similar observations in Amazonia (1) and other regions of the tropics have shown there
was no degradation of the QSCAT signal after 2005 causing any sensor-related decline in anomalies.

Fig. S6. The distribution of normalized anomalies of pixels within the western Amazonia window (window: 4°S–12°S, 76°W–66°W). Shown here are the
DWPAs derived from TRMM (A) and the QSCAT backscatter power (B). The TRMM WDA values show slightly negatively skewed distributions in 2006 and 2007
and strongly negative distribution in 2005 and 2010. In contrast, most pixels from QSCAT anomalies in the area affected by drought have negatively skewed
distributions, except in 2009, in which less half the region experienced positive anomaly.

1. Frolking S, et al. (2006) Evaluation of the SeaWinds scatterometer for regional monitoring of vegetation phenology. Journal of Geophysical Research 111, 10.29/2005JD006588.
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Fig. S7. Autocorrelation results of QSCAT anomaly time series (120 mo) averaged over the area of western Amazonia (window: 4°S–12°S, 76°W–66°W) using
an AR model with time lags covering ∼20% of the months. The results show (Left) the ACF and (Right) the PACF, and the 95% confidence interval shown as
± 2

ffiffiffi

N
p PACF time lag-1 suggests that the process can follow an AR(1) model at monthly time scale.

Fig. S8. Relative effect of the post-2005 deforestation and fire counts on the QSCAT anomaly time series over the area of western Amazonia (window:
4°S–12°S, 76°W–66°W) using the aggregated MODIS fire counts in Amazonia masked by the area of forest cover. (A) Area of forest cover in Amazonia delineated
by theMODIS land cover map, MODIS VCF, and GlobCover 2009 at 0.1° pixel size. (B) Aggregated fire counts fromMODIS product at 0.1° from January 2001 to June
2005 over forested pixels. (C) Aggregated MODIS fire counts from June 2005 to December 2009 over forested pixels. (D) Changes in QSCAT anomaly post-2005
deforestation and post-2005 fire by excluding all fire pixels, as well as pixels greater than 5, 10, and 20 counts.
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Fig. S9. Long-term time series (1930–2010) of rainfall anomaly over the entire Amazon basin and southwestern region (window: 4°S–12°S, 76°W–66°W)
derived from CRU (1920–2005) and TRMM (1998–2010). Because of potential differences in absolute value of rainfall, the anomalies were calculated separately
for each dataset. Over the past 30 y, starting from the mid-1970s and early 1980s, we observe a clear decline in annual rainfall anomaly over southwestern
Amazonia, with larger variations and stronger negative anomalies over the entire Amazon basin. This feature agrees with the long-term modes of climate
variability (24–28 y) (1) and shorter oscillations (4–6 y) (2). The number of negative anomalies significantly greater than −1.0 standard deviation (SD) increased
in the past 30 years (1980–2010) compared with the previous 50 y (1930–1980) by a factor of two. The panels show the annual rainfall (A) and the dry season
(B) rainfall normalized anomaly over the entire Amazon basin, and similar time series anomaly for annual (C) and dry season (D) of the western Amazonia.

1. Marengo JA, et al. (2008) The drought of Amazonia in 2005. Journal of Climate 21:495.
2. Marengo JA, et al. (2011) The drought of 2010 in the context of historical droughts in the Amazon region. Geophys Res Lett 38:L12703.
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Fig. S10. Spatial correlation of TNA (A) and SOI (B) indices with the TRMM (1998–2010) and CRU (1970–2009) monthly rainfall anomalies over the Amazon
basin. Areas of western Amazonia affected by recent droughts showed significant Pearson correlation with (A) a high TNA index over the past decade (1998–
2010: r > 0.55, P < 0.001, ±1-mo lag) and (C) over the past 40 years using the CRU data (1970–2009, r > 0.38, P < 0.01, ±1-mo lag). Whereas El Niño events
represented by SOI showed only significant correlation with monthly (B) TRMM precipitation anomalies in northeastern Amazonia (r > 0.43, P < 0.005, ±1-mo
lag) and (D) the monthly CRU data (r > 0.41, P < 0.005, ±1-mo lag) with higher average rainfall during the dry season and less probability of droughts. The
geographical regions of TNA-related droughts are in the south and southwestern margins of Amazonia. Monthly WDAs derived from TRMM (1998–2010) when
plotted against the TNA index showed an out-of-phase behavior, with low rainfall corresponding to a higher TNA index (E). The TNA index is multiplied by 2 to
better demonstrate the out-of-phase relationship to the TRMM anomalies on the same graph.
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Fig. S11. Standard anomaly derived from TRMM-PR backscatter measurements of surface characteristics in the absence of rain events, showing patterns of
droughts in southwestern Amazonia. The 2005 drought (A) occurs over the same region shown in the QSCAT data. The spatial patterns of 2010 TRMM-PR
anomaly are shown for three consecutive seasons (B) AMJ, (C) JAS, and (D) OND.
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